COMPOSITES SCIENCE AND ENGINEERING ›› 2021, Vol. 0 ›› Issue (5): 110-119.DOI: 10.19936/j.cnki.2096-8000.20210528.017
• REVIEW • Previous Articles Next Articles
LI Li-li1, LI Qing1,2, XIAO Wen-gang1, CHAI Peng-jun1*
Received:
2020-07-31
Online:
2021-05-28
Published:
2021-08-04
CLC Number:
LI Li-li, LI Qing, XIAO Wen-gang, CHAI Peng-jun. RESEARCH PROGRESS IN GRAPHENE/EPOXY RESIN NANOCOMPOSITES[J]. COMPOSITES SCIENCE AND ENGINEERING, 2021, 0(5): 110-119.
Add to citation manager EndNote|Ris|BibTeX
URL: https://frp.cn/EN/10.19936/j.cnki.2096-8000.20210528.017
[1] 宁廷州, 付玲, 张敬芝. 电器封装用高效导热/阻燃环氧复合材料的制备[J]. 包装工程, 2020, 41(3): 156-163. [2] 陈平, 刘胜平, 王德中. 环氧树脂及其应用[M]. 北京: 化学工业出版社, 2011: 5-6. [3] 任志东, 郝思嘉, 邢悦, 等. 氧化石墨烯改性环氧树脂及其复合材料的性能[J]. 航空材料学报, 2019, 39(2): 25-32. [4] CHA J, KIM J, RYU S, et al. Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets[J]. Composites Part B: Engineering, 2019, 162: 283-288. [5] 张力, 吴俊涛, 江雷. 石墨烯及其聚合物纳米复合材料[J]. 化学进展, 2014, 26(4): 560-571. [6] OLOWOJOBA G B, KOPSIDAS S, ESLAVA S, et al. A facile way to produce epoxy nanocomposites having excellent thermal conductivity with low contents of reduced graphene oxide[J]. Journal of Materials Science, 2017, 52(12): 7323-7344. [7] KIM H, MIURA Y, MACOSKO C W. Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity[J]. Chemistry of materials, 2010, 22(11): 3441-3450. [8] HUANG C, PENG J, CHENG Y, et al. Ultratough nacre-inspired epoxy-graphene composites with shape memory properties[J]. Journal of Materials Chemistry A, 2019, 7(6): 2787-2794. [9] PENG J, HUANG C, CAO C, et al. Inverse nacre-like epoxy-graphene layered nanocomposites with integration of high toughness and self-monitoring[J]. Matter, 2020, 2(1): 220-232. [10] HUANG C, PENG J, WAN S, et al. Ultra-tough inverse artificial nacre based on epoxy-graphene by freeze-casting[J]. Angewandte Chemie International Edition, 2019, 58(23): 7636-7640. [11] WANG Z, SHEN X, HAN N M, et al. Ultralow electrical percolation in graphene aerogel/epoxy composites[J]. Chemistry of Materials, 2016, 28(18): 6731-6741. [12] HOU H, DAI W, YAN Q, et al. Graphene size-dependent modulation of graphene frameworks contributing to the superior thermal conductivity of epoxy composites[J]. Journal of Materials Chemistry A, 2018, 6(25): 12091-12097. [13] MING P, ZHANG Y, BAO J, et al. Bioinspired highly electrically conductive graphene-epoxy layered composites[J]. Rsc Advances, 2015, 5(28): 22283-22288. [14] PARK Y T, QIAN Y, CHAN C, et al. Epoxy toughening with low graphene loading[J]. Advanced Functional Materials, 2015, 25(4): 575-585. [15] EKSIK O, BARTOLUCCI S F, GUPTA T, et al. A novel approach to enhance the thermal conductivity of epoxy nanocomposites using graphene core-shell additives[J]. Carbon, 2016, 101: 239-244. [16] ANWAR Z, KAUSAR A, RAFIQUE I, et al. Advances in epoxy/graphene nanoplatelet composite with enhanced physical properties: A review[J]. Polymer-Plastics Technology and Engineering, 2016, 55(6): 643-662. [17] 张方铭, 曾志翔, 程红华, 等. 石墨烯/聚酯/环氧粉末涂层耐腐蚀性研究[J]. 涂料工业, 2017, 47(5): 29-33. [18] LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388. [19] VAZQUEZ-MORENO J M, YUSTE-SANCHEZ V, SANCHEZ-HIDALGO R, et al. Customizing thermally-reduced graphene oxides for electrically conductive or mechanical reinforced epoxy nanocomposites [J]. European Polymer Journal, 2017, 93: 1-7. [20] ZAMAN I, KUAN H C, MENG Q, et al. A facile approach to chemically modified graphene and its polymer nanocomposites[J]. Advanced Functional Materials, 2012, 22(13): 2735-2743. [21] ZAMAN I, KUAN H C, DAI J, et al. From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites[J]. Nanoscale, 2012, 4(15): 4578-4586. [22] HAN S, MENG Q, ARABY S, et al. Mechanical and electrical properties of graphene and carbon nanotube reinforced epoxy adhesives: Experimental and numerical analysis[J]. Composites Part A: Applied Science and Manufacturing, 2019, 120: 116-126. [23] MENG Q, HAN S, ARABY S, et al. Mechanically robust, electrically and thermally conductive graphene-based epoxy adhesives[J]. Journal of Adhesion Science and Technology, 2019, 33(12): 1337-1356. [24] TANG L C, WAN Y J, YAN D, et al. The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites[J]. Carbon, 2013, 60: 16-27. [25] SHARMILA T K B, ANTONY J V, JAYAKRISHNAN M P, et al. Mechanical, thermal and dielectric properties of hybrid composites of epoxy and reduced graphene oxide/iron oxide[J]. Materials & Design, 2016, 90: 66-75. [26] 杨士萱, 矫维成, 楚振明, 等. 石墨烯定向排列增强聚合物基复合材料研究进展[J]. 玻璃钢/复合材料, 2019 (3): 92-100. [27] KINLOCH A J, WANG C H, WU S, et al. Aligning graphene nanoplatelets with an external electric field to improve multifunctional properties of epoxy nanocomposites[J]. Carbon, 2015, 94: 607-618. [28] 周宏, 朴明昕, 李芹, 等. 氧化石墨烯纳米片/环氧树脂复合材料的制备与性能[J]. 复合材料学报, 2015, 32(5): 1309-1315. [29] OLOWOJOBA G B, ESLAVA S, GUTIERREZ E S, et al. In situ thermally reduced graphene oxide/epoxy composites: Thermal and mechanical properties[J]. Applied Nanoscience, 2016, 6(7): 1015-1022. [30] CHHETRI S, ADAK N C, SAMANTA P, et al. Functionalized reduced graphene oxide/epoxy composites with enhanced mechanical properties and thermal stability[J]. Polymer Testing, 2017, 63: 1-11. [31] LI M, ZHOU H, ZHANG Y, et al. Effect of defects on thermal conductivity of graphene/epoxy nanocomposites[J]. Carbon, 2018, 130: 295-303. [32] GAO T, YANG Z, CHEN C, et al. Three-dimensional printed thermal regulation textiles[J]. ACS nano, 2017, 11(11): 11513-11520. [33] RENTERIA J, LEGEDZA S, SALGADO R, et al. Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications[J]. Materials & Design, 2015, 88: 214-221. [34] LIU Z, CHEN Y, DAI W, et al. Anisotropic thermal conductive properties of cigarette filter-templated graphene/epoxy composites[J]. Rsc Advances, 2018, 8(2): 1065-1070. [35] LIU Z, SHEN D, YU J, et al. Exceptionally high thermal and electrical conductivity of three-dimensional graphene-foam-based polymer composites[J]. RSC advances, 2016, 6(27): 22364-22369. [36] MENG Q, WU H, ZHAO Z, et al. Free-standing, flexible, electrically conductive epoxy/graphene composite films[J]. Composites Part A: Applied Science and Manufacturing, 2017, 92: 42-50. [37] MENG Q, KENELAK V, CHAND A, et al. A highly flexible, electrically conductive, and mechanically robust graphene/epoxy composite film for its self-damage detection[J]. Journal of Applied Polymer Science, 2020, 137(34): 48991. [38] WANG F, DRZAL L T, QIN Y, et al. Processing and characterization of high content multilayer graphene/epoxy composites with high electrical conductivity[J]. Polymer Composites, 2016, 37(9): 2897-2906. [39] WAN Y J, YANG W H, YU S H, et al. Covalent polymer functionalization of graphene for improved dielectric properties and thermal stability of epoxy composites[J]. Composites Science and Technology, 2016, 122: 27-35. [40] LIU Y, BABU H V, ZHAO J, et al. Effect of Cu-doped graphene on the flammability and thermal properties of epoxy composites[J]. Composites Part B: Engineering, 2016, 89: 108-116. [41] LUO F, WU K, GUO H, et al. Anisotropic thermal conductivity and flame retardancy of nanocomposite based on mesogenic epoxy and reduced graphene oxide bulk[J]. Composites Science and Technology, 2016, 132: 1-8. [42] WANG R, ZHUO D, WENG Z, et al. A novel nanosilica/graphene oxide hybrid and its flame retarding epoxy resin with simultaneously improved mechanical, thermal conductivity, and dielectric properties[J]. Journal of Materials Chemistry A, 2015, 3(18): 9826-9836. [43] FENG Y, HE C, WEN Y, et al. Superior flame retardancy and smoke suppression of epoxy-based composites with phosphorus/nitrogen co-doped graphene[J]. Journal of hazardous materials, 2018, 346: 140-151. [44] LIU S, FANG Z, YAN H, et al. Superior flame retardancy of epoxy resin by the combined addition of graphene nanosheets and DOPO[J]. Rsc Advances, 2016, 6(7): 5288-5295. [45] DI H, YU Z, MA Y, et al. Anchoring calcium carbonate on graphene oxide reinforced with anticorrosive properties of composite epoxy coatings[J]. Polymers for Advanced Technologies, 2016, 27(7): 915-921. [46] RAMEZANZADEH B, NIROUMANDRAD S, AHMADI A, et al. Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide[J]. Corrosion Science, 2016, 103: 283-304. [47] POURHASHEM S, VAEZI M R, RASHIDI A, et al. Distinctive roles of silane coupling agents on the corrosion inhibition performance of graphene oxide in epoxy coatings[J]. Progress in Organic Coatings, 2017, 111: 47-56. [48] POURHASHEM S, VAEZI M R, RASHIDI A. Investigating the effect of SiO2-graphene oxide hybrid as inorganic nanofiller on corrosion protection properties of epoxy coatings[J]. Surface and Coatings Technology, 2017, 311: 282-294. [49] RAMEZANZADEH B, HAERI Z, RAMEZANZADEH M. A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance[J]. Chemical Engineering Journal, 2016, 303: 511-528. [50] HAYATGHEIB Y, RAMEZANZADEH B, KARDAR P, et al. A comparative study on fabrication of a highly effective corrosion protective system based on graphene oxide-polyaniline nanofibers/epoxy composite[J]. Corrosion Science, 2018, 133: 358-373. [51] SARI M G, SHAMSHIRI M, RAMEZANZADEH B. Fabricating an epoxy composite coating with enhanced corrosion resistance through impregnation of functionalized graphene oxide-co-montmorillonite Nanoplatelet[J]. Corrosion Science, 2017, 129: 38-53. [52] 董永祺. 纳米石墨烯改性复合材料新进展[J]. 玻璃钢, 2017(4): 23-31. [53] ZHANG Y, PARK S J. Imidazolium-optimized conductive interfaces in multilayer graphene nanoplatelet/epoxy composites for thermal management applications and electroactive devices[J]. Polymer, 2019, 168: 53-60. [54] ZHANG Y F, REN Y J, BAI S L. Vertically aligned graphene film/epoxy composites as heat dissipating materials[J]. International Journal of Heat and Mass Transfer, 2018, 118: 510-517. [55] TUNG T T, KARUNAGARAN R, TRAN D N H, et al. Engineering of graphene/epoxy nanocomposites with improved distribution of graphene nanosheets for advanced piezo-resistive mechanical sensing[J]. Journal of Materials Chemistry C, 2016, 4(16): 3422-3430. [56] RAJI A R O, VARADHACHARY T, NAN K, et al. Composites of graphene nanoribbon stacks and epoxy for joule heating and deicing of surfaces[J]. ACS applied materials & interfaces, 2016, 8(5): 3551-3556. [57] 刘栓, 周开河, 吴跃斌, 等. 石墨烯改性重防腐涂料在世界最高输电铁塔的防腐应用[J]. 腐蚀科学与防护技术, 2019, 31(1): 114-120. [58] 刘成楼, 谭勇, 李淑芹, 等. 轨道客车车厢用石墨烯改性水性配套涂料的研究[J]. 中国涂料, 2017, 32(2): 24-31. |
[1] | ZHANG Qian, ZHANG Yifan, ZOU Qi, ZHANG Peng, JIAO Yanan, AN Liuxu, LIU Yanfeng, ZHANG Daijun, HAO Junjie, CHEN Li. Connection performance and failure mechanisms of three-dimensional woven composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 5-11. |
[2] | YAN Jiqiang, XIE Zongyou, LI Jun, ZOU Qi, LEI Shuai, CAO Tienan, ZHANG Daijun. Effect of ply angle on anti-high speed impact properties of polyimide fiber reinforced composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 12-18. |
[3] | GUO Miaocai. The interlayer structures and lightning strike damage behaviors of the conductive particles modified highly tough composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 28-36. |
[4] | LI Moying, ZHENG Linfeng, LIU Gang, LI Mengjiao, YAO Jianan. Adhesion study of carbon fiber/polyaryletherketone thermoplastic composites with epoxy coatings [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 37-42. |
[5] | XIE Wenbo. Study on properties of high heat resistant and flame retardant epoxy resin matrix CFRP [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 43-47. |
[6] | HUANG Daming, TANG Lixin, SUN Juntao, WANG Wei. Research on the effect of residual monomer acrylonitrile on the preparation of PAN-based carbon fiber [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 48-51. |
[7] | YAN Lei, ZHAO Fei, HUAN Dajun, ZHANG Shengyuan, WANG Bin, XIAO Jun. Research on tension-tensile fatigue behavior and life prediction of T700/PPS filament winding thermoplastic composites with NOL rings [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 73-81. |
[8] | SONG Jianhui, YU Xiaochen, ZHU Yingdan, WU Huaping, ZHANG Xiongjun, CHEN Gang. Advances in fatigue performance of fiber reinforced composite-metal hybrid joints [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 105-112. |
[9] | HU Zehui, LI Yong, HUAN Dajun, HAN Bing, GUO Da. Research status and development trend of Z-pin reinforced anti-heat insulation composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(9): 125-132. |
[10] | WANG Xiaoming, WANG Xiaobo, CHENG Yanan, ZHANG Chen, QUAN Zhenzhen, ZHANG Hui, LIU Yong, SUN Houli, YU Jianyong. Fabrication and impact performance analysis of carbon/Kevlar fiber hybrid 3D braided composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(8): 5-10. |
[11] | LI Jiamin, TAN Lina, JIANG Hanwei, FAN Ruyi, RAN Qichao. Study on properties of epoxy modified benzoxazine resin for RTM technology [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(8): 11-16. |
[12] | LING Xujie, CHEN Yinhong, LU Yizhou, FANG Yuan. Study on flame retardant properties and impact properties of flame retardant microcapsule modified glass fiber reinforced polymer composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(8): 17-23. |
[13] | MAO Jingqiao, HU Yiling, PANG You, YANG Yuqiu. Preparation and performance study of sizing treated carbon fiber/polypropylene composite molded by CF/PP fiber mat [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(8): 32-38. |
[14] | WANG Haoda, ZHU Fuxian, HU Kejun, XU Xianyi. Parametric finite element modeling method for fiber reinforced composite bolted structures [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(8): 53-61. |
[15] | XIE Lilai, HU Congliang, DONG Min, YANG Xiaohui, LIU Penghui. Fatigue life calculation method of wind turbine blade based on piecewise linear mean stresses correction [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(8): 62-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||