[1] 黄家康. 复合材料成型技术及应用. 北京: 化学工业出版社, 2011. [2] 严仁军, 于启成. 内埋光纤L型夹芯复合材料结构渐进失效分析. 武汉理工大学学报(交通科学与工程版), 2019, 43(1): 11-15. [3] 周俊辰, 耿谦, 俸翔. 树脂基复合材料L型板承载性能及其破坏过程试验研究. 强度与环境, 2020, 47(1): 41-48. [4] 于晓东, 胡海晓, 贾欲明, 等. 褶皱缺陷影响L型层合板失效行为: 实验和数值研究. 复合材料学报, 2020, 37(8): 1932-1943. [5] 李帅康, 胡海晓, 曹东风, 等. 垫衬补偿对含翘曲间隙L型层合板力学性能的影响研究. 应用力学学报, 2023, 40(5): 1068-1077. [6] LEKHNITSKII S G. Anisotropic plates. New York: Gordon and Breach Science, 1968. [7] CUI W C, LIU T, LEN J X, et al. Interlaminar tensile strength (ILTS) measurement of woven glass/polyester laminates using four-point curved beam specimen. Composites Part A: Applied Science and Manufacturing, 1996, 27(11): 1097-1105. [8] FEIH S, SHERCLIFF H R. Adhesive and composite failure prediction of single-L joint structures under tensile loading. International Journal of Adhesion and Adhesives, 2005, 25(1): 47-59. [9] FEIH S, SHERCLIFF H R. Composite failure prediction of single-L joint structures under bending. Composites Part A: Applied Science and Manufacturing, 2005, 36(3): 381-395. [10] GOZLUKLU B, UYAR I, COKER D. Intersonic delamination in curved thick composite laminates under quasi-static loading. Mechanics of Materials, 2015, 80: 163-182. [11] HAO W F, GE D Y, MA Y J, et al. Experimental investigation on deformation and strength of carbon/epoxy laminated curved beams. Polymer Testing, 2012, 31(4): 520-526. [12] CAO D F, DUAN Q F, HU H X, et al. Computational investigation of both intra-laminar matrix cracking and inter-laminar delamination of curved composite components with cohesive elements. Composite Structures, 2018, 192: 300-309. [13] CAO D F, HU H X, DUAN Q F, et al. Experimental and three-dimensional numerical investigation of matrix cracking and delamination interaction with edge effect of curved composite laminates. Composite Structures, 2019, 225: 111154. [14] 王宇轩, 曹东风, 胡海晓, 等. 计及层内和层间的L形层合板失效的数值研究. 复合材料科学与工程, 2024(3): 43-53. [15] 陈磊. 复合材料热压罐成型固化回弹变形预测及其优化. 长沙: 湖南大学, 2017. [16] 黄岗领, 盛毅, 陈志霞, 等. 复合材料构件固化变形预测及其工装型面补偿设计. 纤维复合材料, 2023, 40(3): 87-93. [17] 胡海晓. 碳纤维增强热固性复合材料固化变形机理实验研究. 武汉: 武汉理工大学, 2016. [18] 李彩林, 余宁, 文友谊. 复合材料L型结构固化变形的数值模拟与补偿. 塑料工业, 2016, 44(7): 51-54. [19] OKABE Y, YASHIRO S, KOSAKA T, et al. Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors. Smart Materials and Structures, 2000, 9(6): 832-838. [20] 常新龙, 何相勇, 周家丹, 等. FBG传感器在复合材料固化监测中的应用. 传感技术学报, 2010, 23(5): 748-752. [21] 周玉敬, 刘刚, 李雪芹, 等. 热残余应力对内埋光纤光栅传感器性能的影响. 复合材料学报, 2013, 30(1): 54-61. [22] MULLE M, COLLOMBET F, OLIVIER P, et al. Assessment of cure residual strains through the thickness of carbon-epoxy laminates using FBGs, part Ⅰ: elementary specimen. Composites Part A: Applied Science and Manufacturing, 2009, 40(1): 94-104. [23] MULLE M, COLLOMBET F, OLIVIER P, et al. Assessment of cure-residual strains through the thickness of carbon-epoxy laminates using FBGs part Ⅱ: technological specimen. Composites Part A: Applied Science and Manufacturing, 2009, 40(10): 1534-1544. [24] 万里冰, 武湛君, 张博明, 等. 光纤布拉格光栅监测复合材料固化. 复合材料学报, 2004(3): 1-5. [25] 田恒. 基于FBG传感器的碳纤维复合材料固化残余应力研究. 武汉: 武汉理工大学, 2012. [26] 耿湘宜, 王静, 姜明顺, 等. 基于内埋光纤Bragg光栅传感器的复合材料固化过程监测. 复合材料学报, 2016, 33(8): 1615-1620. [27] 贾子光, 任亮, 李宏男, 等. 应用光纤光栅传感器监测复合材料固化过程. 中国激光杂志, 2010, 37(5): 1298-1303. [28] MINAKUCHI S, SAWAGUCHI K, TAKAGAKI K, et al. Effect of inter-laminar toughened layers on process-induced strain and deformation of L-shaped composites. Advanced Composite Materials, 2019, 28(5): 445-461. [29] 孙亮亮. 碳纤维复合材料固化残余应力及变形研究. 武汉: 武汉理工大学, 2016. [30] CHANG F K, SPRINGER G S. The strengths of fiber reinforced composite bends. Journal of Composite Materials, 1986, 20(1): 30-45. |