复合材料科学与工程 ›› 2025, Vol. 0 ›› Issue (2): 129-136.DOI: 10.19936/j.cnki.2096-8000.20250228.016

• 工程应用 • 上一篇    下一篇

基于多注意力机制的双通道模型对风机叶片表面目标识别

柯灿阳, 文传博*   

  1. 上海电机学院 电气学院,上海 201306
  • 收稿日期:2023-11-13 出版日期:2025-02-28 发布日期:2025-03-25
  • 通讯作者: 文传博(1981—),男,博士,教授,硕士生导师,研究方向为复杂设备故障诊断与寿命预测、多源信息融合等,wencb@sdju.edu.cn。
  • 作者简介:柯灿阳(1998—),男,硕士研究生,研究方向为风力发电机故障诊断、深度学习等。
  • 基金资助:
    国家自然科学基金(61973209)

Dual-channel model based on multi-attention mechanism for wind turbine blade surface target recognition

KE Canyang, WEN Chuanbo*   

  1. School of Electrical Engineering, Shanghai Dianji University, Shanghai 201306, China
  • Received:2023-11-13 Online:2025-02-28 Published:2025-03-25

摘要: 目前,风机叶片缺陷识别主要依赖于望远镜和停机吊篮这两种方法,但这些方法存在准确率和安全性方面的问题。随着无人机技术的广泛应用,利用无人机进行风机叶片表面缺陷的目标识别成为备受瞩目的选择。本文采用计算机视觉的方法,提出了一种结合Swin Transformer和轻量级神经网络两种不同架构的中量级网络对风机叶片表面目标进行识别。本文收集了华东某沿海风场的1 275张叶片图像,并通过图像增强技术将数据扩充为原来的5倍。模型中,Swin Transformer为主特征提取器,轻量级神经网络为辅特征提取器,引入CBAM注意力机制增强模型对局部关键信息的聚焦能力,并采用CosineAnnealingWarmRestarts的学习率调整策略优化模型性能。实验结果表明:本文所提出的模型在风机叶片目标识别中准确率、F1分数分别达到97.8%和96.35%,均领先于同等量级的主流模型,为风机叶片表面目标识别提供了一种新的思路。

关键词: 风机叶片, 复合材料, 图像识别, Swin Transformer, 轻量级神经网络, 注意力机制

Abstract: At present, the identification of defects in wind turbine blades mainly relies on two methods: telescopes and shutdown gondolas, but these methods have problems in accuracy and safety. With the widespread application of drone technology, the use of drones to identify surface defects on wind turbine blades has become a high-profile option. In this paper, a medium scale network combining Swin Transformer and lightweight neural network was proposed to identify the surface target of wind turbine blade using computer vision method. A dataset comprising 1 275 blade images from a coastal wind farm in East China was collected, and data augmentation techniques were employed to expand the dataset by a factor of five. In the model, the Swin Transformer served as the primary feature extractor, while the lightweight neural network functioned as the auxiliary feature extractor. The CBAM attention mechanism was introduced to enhance the model’s focus on crucial local information, and the learning rate was adjusted using the CosineAnnealingWarmRestarts strategy to optimize model performance. Experimental results show that the accuracy and F1-score of the model proposed in this paper reached 97.8% and 96.35% respectively, which are both ahead of the mainstream models of the same magnitude, providing a new method for wind turbine blade surface target recognition.

Key words: wind turbine blades, composites, image identification, Swin Transformer, CNN, attention mechanism

中图分类号: