[1] YATIGALA N S, BAJWA D S, BAJWA S G. Compatibilization improves physico-mechanical properties of biodegradable biobased polymer composites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 107: 315-325. [2] JUBINVILLE D, ESMIZADEH E, TZOGANAKIS C, et al. Thermo-mechanical recycling of polypropylene for the facile and scalable fabrication of highly loaded wood plastic composites[J]. Composites Part B: Engineering, 2021, 219: 108873. [3] YANG S Q, WEI B J, WANG Q. Superior dispersion led excellent performance of wood-plastic composites via solid-state shear milling process[J]. Composites Part B: Engineering, 2020, 200: 108347. [4] EL-ABBASSI F E, ASSARAR M, AYAD R, et al. A review on alfa fibre (Stipa tenacissima L.): from the plant architecture to the reinforcement of polymer composites[J]. Composites Part A: Applied Science and Manufacturing, 2020, 128: 105677. [5] 陈航, 方海, 霍瑞丽. 木塑复合材料紫外耐老化性能研究进展[J]. 南京工业大学学报(自然科学版), 2023, 45(4): 378-385. [6] 郭毅川, 姜育阳, 沈春晖, 等. 功能化PVC/PET柔性复合材料的性能研究[J]. 复合材料科学与工程, 2024(7): 31-38. [7] 陈圆, 王欣, 胡建鹏. 木塑复合材料人工加速老化的研究动态[J]. 林产工业, 2022, 59(11): 15-19. [8] 徐海龙, 曹岩, 李利芬, 等. 木塑复合材料的老化性能 [J]. 塑料工业, 2021, 49 (S1): 127-132. [9] 徐兵, 梅长彤, 潘明珠, 等. 纳米白炭黑核-壳型木塑复合材料抗紫外老化研究[J]. 塑料工业, 2017, 45(4):77-82, 6. [10] HAO X L, SUN J, CHEN C F, et al. Dimensional stability improvements of waste wood flour/HDPE composites via carbon black network embedding[J]. Construction and Building Materials, 2021, 299: 123955. [11] 牟明明, 袁光明, 陈世尧. 纳米TiO2对木纤维/聚丙烯复合材料抗紫外老化性能的影响[J]. 复合材料学报, 2020, 37(6): 1268-1277. [12] 魏枫, 裴勇勇, 徐海兵, 等. 芳香族聚酰胺纤维抗紫外老化的研究进展[J]. 复合材料科学与工程, 2022(6): 115-121. [13] LIU C Z, MEI C T, XU B, et al. Light stabilizers added to the shell of co-extruded wood/high-density polyethylene composites to improve mechanical and anti-UV ageing properties[J]. Royal Society Open Science, 2018(5): 180074. [14] 朱凌波, 李新功, 杨凯, 等. 几种不同改性剂对稻草/丙烯腈-丁二烯-苯乙烯复合材料性能的影响[J]. 复合材料学报, 2018, 35(7): 1791-1799. [15] 张璐, 孙金鹏, 俞青源, 等. 木粉疏水改性对HDPE基木塑复合材料性能的影响[J]. 化工进展, 2020, 39 (9): 3487-3493. [16] 朱秀芳, 张军, 杨旭宇, 等. 木粉增强聚丙烯复合材料制备及性能研究[J]. 玻璃钢/复合材料, 2019(3): 32-37. [17] VEDRTNAM A, KUMAR S, CHATURVEDI S. Experimental study on mechanical behavior, biodegradability, and resistance to natural weathering and ultraviolet radiation of wood-plastic composites[J]. Composites Part B: Engineering, 2019, 176: 107282. [18] RATANAWILAI T, TANEERAT K. Alternative polymeric matrices for wood-plastic composites: effects on mechanical properties and resistance to natural weathering[J]. Construction and Buliding Materials, 2018, 172: 349-357. [19] 龚新怀, 陈良壁. 茶粉/聚丙烯复合材料自然老化性能[J]. 复合材料学报, 2016, 33(7): 1437-1445. [20] 龚新怀, 赵升云, 陈良璧. 茶粉/聚丙烯复合材料加速老化性能[J]. 农业工程学报, 2015, 31(12): 308-314. [21] CHAN C M, PRATT S, HALLEY P, et al. Mechanical and physical stability of polyhydroxyalkanoate (PHA)-based wood plastic composites (WPCs) under natural weathering[J]. Polymer Testing, 2019, 73: 214-221. [22] WANG X Q, SOTOUDEHNIAKARANI F, YU Z M. Evaluation of corrugated cardboard biochar as reinforcing fiber on properties, biodegradability and weatherability of wood-plastic composites[J]. Polymer Degradation and Stability, 2019, 168: 108955. [23] 全国塑料标准化技术委员会. 塑料 实验室光源暴露试验方法 第3部分: 荧光紫外灯 GB/T 16422.3—2022[S]. 北京: 中国标准出版社, 2022. [24] 全国塑料标准化技术委员会. 塑料 弯曲性能的测定: GB/T 9341—2008[S]. 北京: 中国标准出版社, 2009. [25] 全国塑料标准化技术委员会. 塑料 拉伸性能的测定: GB/T 1040.1—2018[S]. 北京: 中国标准出版社, 2019. [26] 祁睿格, 何春霞, 晋强. 麦秸/聚氯乙烯复合材料新疆户外老化性能[J]. 复合材料学报, 2020, 37(7): 1539-1546. [27] 侯人鸾, 何春霞, 薛娇, 等. 麦秸秆粉/PP木塑复合材料紫外线加速老化性能[J]. 复合材料学报, 2013, 30(5): 86-93. [28] ANDRE A C, JOSEANE T, GULM N. The effect of accelerated aging on the surface mechanical properties of polyethylene[J]. Polymer Degradation and Stability, 2003, 81(2): 367-373. [29] CARRASCO F, PAGES P, PASCUAL S, et al. Artificial aging of high-density polyethylene by ultraviolet irradiation[J]. European Polymer Journal, 2001, 37(7): 1457-1464. [30] 王伟宏, 王清文, 张征明. 稻壳/聚乙烯复合材的自然老化与紫外光加速老化[J]. 林业科学, 2008(8): 90-94. |