[1] 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8): 2773-2797. [2] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-11. [3] 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1): 1-10. [4] SCHLOTHAUER A, SCHWOB N, PAPPAS G A, et al. Ultra-thin thermoplastic composites for foldable structures[C]//AIAA Scitech 2020 Forum. Orlando: 2020: 1-12. [5] KIM Y H N, KO S, LAY W S, et al. Effects of shallow biangle, thin-ply laminates on structural performance of composite wings[J]. AIAA Journal, 2017, 55(6): 2086-2092. [6] AMACHER R, SMITH W, BOTSIS J, et al. New design opportunities using thin-ply composites[J]. JEC Composites Magazine, 2015, 52: 33-35. [7] LIU B, ZHANG Q, LI X, et al. Potential advantage of thin-ply on the composite bolster of a bogie for a high-speed electric multiple unit[J]. Polymer Composites, 2021, 42(7): 3404-3417. [8] BISAGNI C, VESCOVINI R. Analytical formulation for local buckling and post-buckling analysis of stiffened laminated panels[J]. Thin-Walled Structures, 2009, 47(3): 318-334. [9] LEE A J, FERNANDEZ J M. Inducing bistability in collapsible tubular mast booms with thin-ply composite shells[J]. Composite Structures, 2019, 225: 111166. [10] KAWABE K, MATSUO T, MAEKAWA Z I. New technology for opening various reinforcing fiber tows[J]. Journal of the Society of Materials Science Japan, 1998, 47(7): 727-734. [11] SIHN S, KIM R, KAWABE K, et al. Experimental studies of thin-ply laminated composites[J]. Composites Science and Technology, 2007, 67(6): 996-1008. [12] GALOS J. Thin-ply composite laminates: a review[J]. Composite Structures, 2020, 236: 111920. [13] North thin ply technology[J]. Reinforced Plastics, 2016, 60(1): 28-29. [14] HUANG C, HE M, HE Y, et al. Exploration relation between interlaminar shear properties of thin-ply laminates under short-beam bending and meso-structures[J]. Journal of Composite Materials, 2018, 52(17): 2375-2386. [15] WU H, LI S, ZHANG J, et al. Electrical resistivity response of unidirectional thin-ply carbon fiber reinforced polymers[J]. Composite Structures, 2019, 228: 111342. [16] FURTADO C, TAVARES R P, ARTEIRO A, et al. Effects of ply thickness and architecture on the strength of composite sub-structures[J]. Composite Structures, 2021, 256: 113061. [17] 何明昌, 黄春芳, 郑青, 等. 薄铺层层合复合材料研究进展[J]. 玻璃钢/复合材料, 2016(8): 92-98. [18] 马心旗, 宗文波, 张竹青, 等. 超薄热塑性复合材料人形杆制备及其性能研究[J]. 复合材料科学与工程, 2023(7): 65-71. [19] YOKOZEKI T, AOKI T, OGASAWARA T, et al. Effects of layup angle and ply thickness on matrix crack interaction in contiguous plies of composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2005, 36(9): 1229-1235. [20] ARTEIRO A, CATALANOTTI G, MELRO A R, et al. Micro-mechanical analysis of the in situ effect in polymer composite laminates[J]. Composite Structures, 2014, 116: 827-840. [21] ARTEIRO A, CATALANOTTI G, MELRO A R, et al. Micro-mechanical analysis of the effect of ply thickness on the transverse compressive strength of polymer composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 79: 127-137. [22] YOKOZEKI T, AOKI Y, OGASAWARA T. Experimental characterization of strength and damage resistance properties of thin-ply carbon fiber/toughened epoxy laminates[J]. Composite Structures, 2008, 82(3): 382-389. [23] HUANG C, HE M, HE Y, et al. Mechanical behaviors of thin-ply composite laminates under short-beam shear and open-hole tensile loads:pseudo-homogeneous and isotropic behaviors[C]//21th International Conference on Composite Materials. Xi’an: 2017: 1248-1257. [24] YUAN Y, YAO X, LIU B, et al. Failure modes and strength prediction of thin ply CFRP angle-ply laminates[J]. Composite Structures, 2017, 176: 729-735. [25] AMACHER R, CUGNONI J, BOTSIS J, et al. Thin ply composites: experimental characterization and modeling of size-effects[J]. Composites Science and Technology, 2014, 101: 121-132. [26] NADERI M, IYYER N. Micromechanical analysis of damage mechanisms under tension of 0°-90° thin-ply composite laminates[J]. Composite Structures, 2020, 234: 111659. [27] KOHLER S, CUGNONI J, AMACHER R, et al. Transverse cracking in the bulk and at the free edge of thin-ply composites: experiments and multiscale modelling[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105468. [28] HERRÁEZ M, MORA D, NAYA F, et al. Transverse cracking of cross-ply laminates: a computational micromechanics perspective[J]. Composites Science and Technology, 2015, 110: 196-204. [29] LIU Y, LIANG S, ZHENG C, et al. Micro-mechanical analysis of transverse tensile in-situ effect of thin-ply composites considering interlaminar resin region[J]. Advanced Composite Materials, 2023, 32: 1-18. [30] 张正, 李世超, 张金纳, 等. 预浸料的超薄化对碳纤维/环氧树脂复合材料拉伸破坏行为的影响[J]. 复合材料学报, 2020, 37(4): 66-73. [31] SAITO H, MORITA M, KAWABE K, et al. Effect of ply-thickness on impact damage morphology in CFRP laminates[J]. Journal of Reinforced Plastics and Composites, 2011, 30(13): 1097-1106. [32] CUGNONI J, AMACHER R, KOHLER S, et al. Towards aerospace grade thin-ply composites: effect of ply thickness, fibre, matrix and interlayer toughening on strength and damage tolerance[J]. Composites Science and Technology, 2018, 168: 467-477. [33] LI S, SITNIKOVA E. A critical review on the rationality of popular failure criteria for composites[J]. Composites Communications, 2018(8): 7-13. [34] Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039/D3039M-17[S]. [35] Standard test method for compressive properties of polymer matrix composite materials using a combined loading compression (CLC) test fixture: ASTM D6641[S]. [36] 沈观林, 胡更开, 刘彬. 复合材料力学: 第2版[M]. 北京: 清华大学出版社, 2013. |