[1] YOO D Y, BANTHIA N. Mechanical properties of ultra-high performance fiber-reinforced concrete: A review[J]. Cement and Concrete Composites, 2016, 73: 267-280. [2] 王双飞, 柯国军, 彭勃, 等. 水胶比对超高性能混凝土强度的影响[J]. 中国粉体技术, 2023, 29(2): 139-148. [3] 王国业, 李昶, 倪志文,等. 轻-粗混合骨料混凝土的基本力学性能试验研究[J]. 沈阳建筑大学学报(自然科学版), 2017, 33(5): 870-880. [4] 张培辉, 方圣恩, 洪华山. 不同纤维增强混凝土力学性能和破坏形态对比试验[J]. 玻璃钢/复合材料, 2019(6): 73-79. [5] 吴清凤, 吴颜驹, 陈强, 等. 钢-聚丙烯混杂纤维混凝土的力学性能[J]. 建筑结构, 2022, 52(2): 999-1003. [6] 蒋明慧, 刘贵文, 薛暄译. 聚乙烯和聚丙烯纤维对混凝土工作性能影响分析[J]. 混凝土, 2023(2): 89-91, 99. [7] 宋俊杰, 陈金鹏, 肖志红, 等. 聚丙烯纤维/钢纤维/混凝土复合材料的制备及力学性能研究[J]. 塑料科技, 2022, 50(9): 68-74. [8] 黎祥. 短聚丙烯纤维混凝土的“纤维-水泥”组合关系研究[J]. 混凝土, 2022(11): 87-90, 100. [9] 曹明莉, 许玲, 李志文. 聚乙烯醇纤维及钢纤维增强水泥砂浆流变性和流动性能[J]. 建筑材料学报, 2017, 20(1): 112-117. [10] 魏发云, 杨帆, 王海楼, 等. 改性聚乙烯醇纤维增强水泥基复合材料制备及其力学性能[J]. 纺织学报, 2021, 42(10): 53-60. [11] 阚黎黎, 朱嘉伦, 王飞, 等. 聚乙烯纤维增强赤泥-碱矿渣复合材料的力学性能[J]. 复合材料学报, 2022, 39(11): 5367-5374. [12] 王志航, 许金余, 张彤, 等. 碳纤维改性聚合物水泥复合填缝材料拉伸力学性能研究[J]. 化工新型材料, 2021, 49(12): 218-222. [13] 孙杰, 魏树梅. 碳纤维增强水泥基复合材料的制备及其性能研究[J]. 新型建筑材料, 2018, 45(10): 61-64. [14] 俞昊天, 卜祥斌, 张攀. 混凝土用碳纤维增强复合材料的性能研究[J]. 塑料科技, 2021, 49(7): 17-20. [15] 顾展飞, 全鑫, 刘之葵. 玄武岩纤维对沙漠砂高强混凝土性能研究[J]. 混凝土, 2022(11): 46-50. [16] 贺晶晶, 师俊平, 张勇, 等. 玄武岩纤维改善混凝土拉伸性能分析[J]. 复合材料科学与工程, 2021(8): 39-43. [17] 王飞龙, 刘爱华. 混凝土用增强纤维的基本性能与增强机理[J]. 棉纺织技术, 2018, 46(1): 81-84. [18] 郭宜杭, 李黎, 杨晨欣, 等. 植物纤维增强混凝土研究进展[J]. 硅酸盐通报, 2022, 41(10): 3347-3358. [19] 彭书成, 陈美兰, 侯正昌. 改性非晶合金纤维材料混凝土复合材料的制备方法: 200710052162. X[P]. 2007-10. [20] KIM B J, YI C, AHN Y R. Effect of embedment length on pullout behavior of amorphous steel fiber in Portland cement composites[J]. Construction and Building Materials, 2017, 143(15): 83-91. [21] 周小斌, 江朝华, 张伟伟, 等. 非晶合金纤维增强水泥砂浆性能试验研究[J]. 长江科学院院报, 2017, 34(5): 120-124. [22] 姚可夫, 施凌翔, 陈双琴, 等. 铁基软磁非晶/纳米晶合金研究进展及应用前景[J]. 物理学报, 2018, 67(1): 8-15. [23] 殷更, 李方伟, 邓磊, 等. 非晶合金冲击韧性研究现状及展望[J]. 中国有色金属学报, 2020, 30(3): 530-541. [24] 陈伯渠, 云翠华, 邹洪流, 等. 非晶及纳米晶软磁材料耐腐蚀性能的研究现状[J]. 材料导报, 2006(12): 113-115. [25] 韩嵘, 赵顺波, 曲福来. 钢纤维混凝土抗拉性能试验研究[J]. 土木工程学报, 2006(11): 63-67. [26] 潘慧敏, 马云朝. 钢纤维混凝土抗冲击性能及其阻裂增韧机理[J]. 建筑材料学报, 2017, 20(6): 956-961. [27] 聂洁, 李传习, 钱国平, 等. 钢纤维形状与掺量对UHPC施工及力学特性的影响[J]. 材料导报, 2021, 35(4): 4042-4052. [28] 徐礼华, 李雪峰, 池寅, 等. 聚丙烯纤维混凝土单轴受压疲劳寿命分析[J]. 湖南大学学报(自然科学版), 2023, 50(3): 121-131. [29] SANTHANAM M, KHAYAT K K. Fibre reinforced cementitious composites[M]. 2nd ed. Taylor & Francis, 2018: 18-21. [30] WON J P, HONG B T, CHOI T J, et al. Flexural behaviour of amorphous micro-steel fibre-reinforced cement composites[J]. Composite Structures, 2012, 94(4): 1443-1449. [31] CHOI K K, KU D O. Flexural behaviour of amorphous metal-fibre-reinforced concrete[J]. Proceedings of the Institution of Civil Engineers. Structures and buildings, 2015, 168(1): 15-25. [32] YOO D Y, BANTHIA N. Experimental and numerical analysis of the flexural response of amorphous metallic fiber reinforced concrete[J]. Materials and Structures, 2017, 50(1): 64-77. [33] DINH N H, CHOI K K, KIM H S. Mechanical properties and modeling of amorphous metallic fiber-reinforced concrete in compression[J]. International Journal of Concrete Structures & Materials, 2016, 10(2): 221-236. [34] JIANG C H, WANG Y Z, GUO W W, et al. Experimental study on the mechanical properties of amorphous alloy fiber-reinforced concrete[J]. Advances in Materials Science and Engineering, 2018, 2018(2): 1-9. [35] LI Y, DENG Y G. Mechanical properties and corrosion resistance of high performance fiber-reinforced concrete with steel or amorphous alloy fibers[J]. Materials Research Express, 2021, 8(9): 095201. [36] KIM H, KIM G, NAM J, et al. Static mechanical properties and impact resistance of amorphous metallic fiber-reinforced concrete[J]. Composite Structures, 2015, 134(10): 831-844. [37] KIM H, KIM G, LEE S, et al. Effects of strain rate on the tensile behavior of cementitious composites made with amorphous metallic fiber[J]. Cement and Concrete Composites, 2020, 108: 103519. [38] CHOI S J, HONG B T, LEE S J, et al. Shrinkage and corrosion resistance of amorphous metallic-fiber-reinforced cement composites[J]. Composite Structures, 2014, 107: 537-543. [39] 倪晓俊, 吴忠旺, 冯硕, 等. 非晶合金纤维耐腐蚀性能研究[J]. 金属功能材料, 2015, 22(2): 24-28. [40] CHOI K K, CHOI H, KIM J C. Shrinkage cracking of amorphous metallic fibre-reinforced concrete[J]. Proceedings of the Institution of Civil Engineers, 2015, 168(4): 287-297. [41] CHOI S J, KIM J H, BAE S H, et al. Strength, drying shrinkage, and carbonation characteristic of amorphous metallic fiber-reinforced mortar with artificial lightweight aggregate[J]. Materials, 2020, 13(19), 4451. [42] KIM J H, BAE S H, CHOI S J. Effect of amorphous metallic fibers on strength and drying shrinkage of mortars with steel slag aggregate[J]. Materials, 2021, 14(18): 5403. [43] CHOE G, KIM G, KIM H, et al. Effect of amorphous metallic fiber on mechanical properties of high-strength concrete exposed to high-temperature[J]. Construction and Building Materials, 2019, 218(10): 448-456. |