[1] XIAO J Z, LI W G, FAN Y H, et al. An overview of study on recycled aggregate concrete in China (1996-2011)[J]. Construction and Building Materials, 2012, 31: 364-383. [2] 肖建庄. 再生混凝土[M]. 北京: 中国建筑工业出版社, 2008. [3] HU J, WANG Z, KIM Y. Feasibility study of using fine recycled concrete aggregate in producing self-consolidation concrete[J]. Journal of Sustainable Cement-Based Materials, 2013, 2(1): 20-34. [4] 何旭升. 不同纤维及含量对再生混凝力学性能影响研究[J]. 四川建筑科学研究, 2019, 45(3): 110-114. [5] 皇甫秉辉. 混掺纤维对再生混凝土性能的影响研究[D]. 西安: 西安理工大学, 2021. [6] MA Q M, GUO R X, ZHAO Z M, et al. Mechanical properties of concrete at high temperature a review[J]. Construction and Building Materials, 2015, 93: 371-383. [7] LI Y, QU Z, WU K, et al. A bio-derived char-forming strategy for surface fireproofing: Functionalization of UV-curing flame-retardant coating with vinyl-modified tannic acid[J]. European Polymer Journal, 2021, 7(2): 148-153. [8] XIAO J, FAN Y, TAWANA M M. Residual compressive and flexural strength of a recycled aggregate concrete following elevated temperatures[J]. Structural Concrete, 2013, 14(2): 168-175. [9] 夏冬桃, 何国章, 李彪, 等. 不同最大粒径粗骨料和钢纤维掺量对再生混凝土抗冲击性能的影响[J]. 混凝土, 2022(12): 100-105, 109. [10] 高丹盈, 张丽娟, 芦静云, 等. 再生骨料混凝土配合比设计参数研究[J]. 建筑科学与工程学报, 2016, 33(1): 8-14. [11] ETXBERRIA M, VAZQUEZ E, MARI A, et al. Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete[J]. Cement and Concrete Research, 2007, 37(5): 735-742. [12] DONG H, CAO W, BIAN J, et al. The fire resistance performance of recycled aggregate concrete columns with different concrete compressive strengths[J]. Materials, 2014, 7(12): 7843-7860. [13] WU H, LIN X, ZHOU A. A review of mechanical properties of fibre reinforced concrete at elevated temperatures[J]. Cement and Concrete Research, 2020, 135: 106117. [14] 邓艳锋, 夏正兵. 纤维增强机理及阻裂机理分析综述[J]. 今日南国(中旬刊), 2010(11): 194-195. [15] 李春蕊, 王学志, 刘华新, 等. 混杂纤维混凝土的研究进展[J]. 材料科学与工程学报, 2018, 36(3): 504-510. [16] 施国栋. 纤维增强混凝土增强增韧机理分析及对比实验研究[J]. 安徽工程大学学报, 2020, 35(2): 85-94. [17] 林倩, 吴飚. 浅谈纤维混凝土[J]. 福建建材, 2011(1): 30-32. [18] 李冬晨. 纤维混凝土研究进展及增强机理[J]. 建材与装饰, 2018(10): 202. [19] 王飞龙, 刘爱华. 混凝土用增强纤维的基本性能与增强机理[J]. 棉纺织技术, 2018, 46(1): 81-84. [20] 李秋义, 李家和, 杨向宁. SFRC纤维间距理论存在的问题[J]. 混凝土, 2003(2): 14-16. [21] KALIFA P, MENNETEAU F D, QUENARD D. Spalling and pore pressure in HPC at high temperatures[J]. Cement and Concrete Research, 2000, 30(12): 1915-1927. [22] 刘红彬, 李康乐, 鞠杨, 等. 高强高性能混凝土的高温力学性能和爆裂机理研究[J]. 混凝土, 2009(7): 11-14. [23] 刘淑钰, 苗艳春, 李明厚, 等. 高温后再生保温混凝土损伤劣化数值分析[J]. 太原理工大学学报, 2024, 55(5): 892-904. [24] 郝松, 时金娜, 赵燕茹. 纤维混凝土耐高温性能研究综述[C]//《建筑科技与管理》组委会. 2016年4月建筑科技与管理学术交流会论文集. 北京: 北京恒盛博雅国际文化交流中心, 2016: 5-6, 13. [25] 张广泰, 陈浩, 郭锐, 等. 纤维混凝土高温性能及作用机理研究综述[J]. 混凝土与水泥制品, 2016(1): 62-68. [26] 鲁浈浈, 何杨, 李林杰. 混凝土高温爆裂性能影响因素及预防措施综述[J]. 火灾科学, 2019, 28(2): 128-134. [27] JU Y, LIU J, LIU H, et al. On the thermal spalling mechanism of reactive powder concrete exposed to high temperature: Numerical and experimental studies[J]. International Journal of Heat and Mass Transfer, 2016, 98: 493-507. [28] 单晨晨, 杨鼎宜, 张鑫怡, 等. 纤维混凝土高温力学机理综述[J]. 混凝土, 2018(4): 87-90, 94. [29] 韩雪, 杨鼎宜, 单晨晨, 等. 纤维混凝土高温性能与作用机理[J]. 江苏建材, 2017(4): 19-22. [30] 王涵, 刘心洁, 王聪, 等. 纤维增强自密实混凝土高温性能研究综述[J]. 混凝土与水泥制品, 2021(4): 64-68. [31] 方泽鹏. 混凝土火灾致伤的原因及损伤检测[J]. 土工基础, 2002(2): 75-77. [32] 傅方宇, 唐春安. 水泥基复合材料高温劣化与损伤[M]. 北京: 科学出版社, 2012. [33] DEMIR I, GUMUS M, GOKCE H S. Gamma ray and neutron shielding characteristics of polypropylene fiber-reinforced heavyweight concrete exposed to high temperatures[J]. Construction and Building Materials, 2020, 257: 119596. [34] 潘慧敏, 马云朝. 钢纤维混凝土抗冲击性能及其阻裂增韧机理[J]. 建筑材料学报, 2017, 20(6): 956-961. [35] 孔祥清, 何文昌, 邢丽丽, 等. 钢纤维对再生混凝土抗冲击性能的影响[J]. 材料科学与工程学报, 2022, 40(2): 284-291, 339. [36] PAN H M, MA Y C. Impact resistance of steel fiber reinforced concrete and its mechanism of crack resistance and toughening[J]. Journal of Building Materials, 2017, 20(6): 956-961. [37] 边昊博, 刘元珍, 白睿奇, 等. 玄武岩纤维再生混凝土的轴心抗压性能研究[J]. 合肥工业大学学报(自然科学版), 2022, 45(5): 649-653. [38] 陈伟仁, 谢国华, 李富强, 等. 钢筋与玻璃纤维再生混凝土黏结锚固性能研究[J]. 混凝土, 2021(7): 69-74. [39] AHMED W, LIM C W, AKBAR A. Influence of elevated temperatures on the mechanical performance of sustainable-fiber-reinforced recycled aggregate concrete: A review[J]. Buildings, 2022, 12(4):487. [40] CHEN G M, HE Y H, YANG H, et al. Compressive behavior of steel fiber reinforced recycled aggregate concrete after exposure to elevated temperatures[J]. Construction and Building Materials, 2014, 71: 1-15. [41] MEHDIPOUR S, NIKBIN I M, DEZHAMPANAH S, et al. Mechanical properties, durability and environmental evaluation of rubberized concrete incorporating steel fiber and metakaolin at elevated temperatures[J]. Journal of Cleaner Production, 2020, 254: 120126. [42] XIE J, ZHANG Z, LU Z, et al. Coupling effects of silica fume and steel-fiber on the compressive behaviour of recycled aggregate concrete after exposure to elevated temperature[J]. Construction and Building Materials, 2018, 184: 752-764. [43] WANG J, XIE J, HE J, et al. Combined use of silica fume and steel fibre to improve fracture properties of recycled aggregate concrete exposed to elevated temperature[J]. Journal of Material Cycles and Waste Management, 2020, 22: 862-877. [44] CHEN G M, YANG H, LIN C J, et al. Fracture behaviour of steel fibre reinforced recycled aggregate concrete after exposure to elevated temperatures[J]. Construction and Building Materials, 2016, 128: 272-286. [45] 杨欢. 高温后钢纤维再生骨料混凝土轴压和断裂性能试验研究[D]. 广州: 广东工业大学, 2014. [46] 袁少林. 混杂纤维再生混凝土高温后力学性能试验研究[D]. 锦州: 辽宁工业大学, 2018. [47] SHAIKH F U A. Mechanical properties of concrete containing recycled coarse aggregate at and after exposure to elevated temperatures[J]. Structural Concrete, 2018, 19(2): 400-410. [48] ZEGARDLO B, SZELAG M, OGRODNIK P. Concrete resistant to spalling made with recycled aggregate from sanitary ceramic wastes-The effect of moisture and porosity on destructive processes occurring in fire conditions[J]. Construction and Building Materials, 2018, 173: 58-68. [49] ASLANI F, KELIN J. Assessment and development of high-performance fibre-reinforced lightweight self-compacting concrete including recycled crumb rubber aggregates exposed to elevated temperatures[J]. Journal of Cleaner Production, 2018, 200: 1009-1025. [50] ASLANI F, SUN J, HUANG G. Mechanical behavior of fiber-reinforced self-compacting rubberized concrete exposed to elevated temperatures[J]. Journal of Materials in Civil Engineering, 2019, 31(12): 04019302. [51] 张蓉. 高温后聚丙烯纤维增强再生混凝土轴压和断裂性能试验研究[D]. 广州: 广东工业大学, 2016. [52] 郭瑞晋. 玄武岩纤维再生混凝土高温后力学性能试验研究[D]. 锦州: 辽宁工业大学, 2017. [53] GUO R, BI Z, WANG F. Influence of different mixing methods on the axial compressive strength of basalt fiber recycled concrete[C]//IEEE. 2016 3rd International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS). New York: IEEE, 2016: 368-371. [54] WANG Y, LI S, PETER H, et al. Mechanical properties and microstructure of basalt fibre and nano-silica reinforced recycled concrete after exposure to elevated temperatures[J]. Construction and Building Materials, 2020, 247: 118561. [55] DONG J F, WANG Q Y, GUAN Z W, et al. High-temperature behaviour of basalt fibre reinforced concrete made with recycled aggregates from earthquake waste[J]. Journal of Building Engineering, 2022, 48: 103895. [56] 朱如意. 玻璃纤维改性再生混凝土高温后力学性能研究[D]. 湘潭: 湘潭大学, 2021. [57] WU C H, CHI J H, WANG W C, et al. Effect of glass fiber and high temperature on the mechanical properties of recycled aggregate concrete[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(11): 4655-4668. [58] 张博明, 李嘉, 李煦. 混杂纤维复合材料最优纤维混杂比例及其应用研究进展[J]. 材料工程, 2014(7): 107-112. [59] 许金校, 肖建庄, 罗素蓉, 等. 纤维再生混凝土的研究进展与展望[J]. 工业建筑, 2022, 52(2): 10-17, 31. [60] ZHANG J, LIU H, LIU G, et al. Influence on mechanical properties and microstructure analysis of hybrid fiber recycled aggregate concrete after exposure to elevated temperature[J]. Journal of Adhesion Science and Technology, 2023, 37(16): 2328-2347. [61] 范锦泽. 混杂纤维自密实再生混凝土力学性能试验研究[D]. 锦州: 辽宁工业大学, 2021. [62] 朱柏衡, 刘华新. 高温后混杂纤维再生混凝土力学性能试验研究[J]. 铁道科学与工程学报, 2021, 18(6): 1479-1485. [63] 邹登雄, 杨悦. 玄武岩纤维对聚丙烯再生混凝土高温力学性能的影响[J]. 化学与粘合, 2023, 45(1): 25-28, 65. |