玻璃钢/复合材料 ›› 2019, Vol. 0 ›› Issue (6): 115-121.
• 综述 • 上一篇
孙成, 宋春生*, 刘星宇, 黄昱翔
收稿日期:
2019-03-22
出版日期:
2019-06-25
发布日期:
2019-06-28
通讯作者:
宋春生(1981-),男,博导,教授,主要从事隔振、碳纤维复合材料方面的研究,song_chsh@163.com。
作者简介:
孙成(1994-),男,硕士,主要从事碳纤维复合材料方面的研究。
基金资助:
SUN Cheng, SONG Chun-sheng*, LIU Xing-yu, HUANG Yu-xiang
Received:
2019-03-22
Online:
2019-06-25
Published:
2019-06-28
摘要: 本综述旨在收集有关复合材料阻尼的现有文献。综合回顾实验与数值计算方面的研究工作,围绕复合材料阻尼特性问题,主要从实验表征、影响阻尼特性的参数、阻尼特性的数学模型和数值模型等几个方面的研究成果进行了较为详细的评述和讨论。虽然目前为止,纤维增强复合材料还没有被广泛开发,但它有潜力通过改变组分、几何结构和边界条件来调整阻尼。最后,基于复合材料阻尼特性研究的发展趋势和进一步研究可能面临的突出问题,对复合材料阻尼特性的发展方向进行了讨论与展望。
中图分类号:
孙成, 宋春生, 刘星宇, 黄昱翔. 复合材料阻尼特性研究现状与进展[J]. 玻璃钢/复合材料, 2019, 0(6): 115-121.
SUN Cheng, SONG Chun-sheng, LIU Xing-yu, HUANG Yu-xiang. PROGRESS AND PROSPECTS OF DAMPING PROPERTIES OF COMPOSITE MATERIALS[J]. Fiber Reinforced Plastics/Composites, 2019, 0(6): 115-121.
[1] Sola M, Jette M. Analytical and experimental study of embedded damping elements in composite[C]//16th International Congress on Sound and Vibration. Krakow: 2009. [2] Talbot J P, Woodhouse J. The vibration damping of laminated plates[J]. Composites Part A (Applied Science and Manufacturing), 1997, 28(12): 0-1012. [3] Maheri M R. The effect of layup and boundary conditions on the modal damping of FRP composite panels[J]. Journal of Composite Materials, 2011, 45(13): 1411-1422. [4] Hwang S J, Gibson R F. The use of strain energy-based finite element techniques in the analysis of various aspects of damping of composite materials and structures[J]. Journal of Composite Materials, 1992, 26(26): 2585-2605. [5] Hwang S J, Gibson R F, Singh J. Decomposition of coupling effects on damping of laminated composites under flexural vibration[J]. Composites Science and Technology, 1992, 43(2): 159-169. [6] Berthelot J M, Assarar M, Sefrani Y,et al. Damping analysis of composite materials and structures[J]. Composite Structures, 2008, 85(3): 189-204. [7] Wright G C. The dynamic properties of glass and carbon fibrereinforced plastic beams[J]. Journal of Sound and Vibration, 1972, 21(2): 205-212. [8] Adams R D, Bacon D G C. Measurement of the flexural damping ca-pacity and dynamic Young′s modulus of metals and reinforced plastics[J]. Journal of Physics D: Applied Physics, 1973, 6(1): 27-41. [9] Adams R D, Bacon D G C. The dynamic properties of unidirectional fibre reinforced composites in flexure and torsion[J]. Journal of Composite Materials, 1973, 7(1): 53-67. [10] Guild F J, Adams R D. A new technique for the measurement of the specific damping capacity of beams in flexure[J]. Journal of Physics E Scientific Instruments, 1981, 14(3): 355-355. [11] Lin D X, Ni R G, Adams R D. Prediction and measurement of the vibrational damping parameters of carbon and glass fibre-reinforced plastics plates[J]. Journal of Composite Materials, 1984, 18(2): 132-152. [12] Suarez S A, Gibson R F, Deobald L R. Random and impulse techniques for measurement of damping in composite materials[J]. Experimental Techniques, 2010, 8(10): 19-24. [13] Crane R M, Gillespie J W. Characterization of the vibration damping loss factor of glass and graphite fiber composites[J]. Composites Science and Technology, 1991, 40(4): 355-375. [14] Maheri M R, Adams R D. Finite-element prediction of modal response of damped layered composite panels[J]. Composites Science and Technology, 1995, 55(1): 13-23. [15] Kyriazoglou C, Guild F J. Finite element prediction of damping of composite GFRP and CFRP laminates-a hybrid formulation- vibration damping experiments and Rayleigh damping[J]. Composites Science and Technology, 2006, 66(3-4): 487-498. [16] Stevenson J D. Structural damping values as a function of dynamic response stress and deformation levels[J]. Nuclear Engineering and Design, 1980, 60(2): 211-237. [17] Ni R G, Adams R D. A rational method for obtaining the dynamic mechanical properties of laminae for predicting the stiffness and damping of laminated plates and beams[J]. Composites, 1984, 15(3): 193-199. [18] HadiA S, Ashton J N. Measurement and theoretical modelling of the damping properties of a uni-directional glass/epoxy composite[J]. Composite Structures, 1996, 34(4): 381-385. [19] Maheri M R, Adams R D. Modal vibration damping of anisotropic frp laminates using the rayleigh-ritz energy minimization scheme[J]. Journal of Sound and Vibration, 2003, 259(1): 17-29. [20] Nelson D J, Hancock J W. Interfacial slip and damping in fibre reinforced composites[J]. Journal of Materials Science,1978, 13(11): 2429-2440. [21] Doebling S W. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: aliterature review[J]. Los Alamos National Laboratory Report LA-13070-MS, 1996, 30(11): 2043-2049. [22] 康逢辉, 吴医博, 杨瑞瑞. 连接接头对复合材料基座减振性能影响研究[J]. 材料开发与应用, 2013, 28(5): 59-63. [23] Vazquez A, Ambrustolo M, Moschiar S M, et al. Interphase modifi-cation in unidirectional glass-fiber epoxy composites[J]. Composites Science and Technology, 1998, 58(3-4): 549-558. [24] Finegan I C, Gibson R F. Analytical modeling of damping at micromechanical level in polymer composites reinforced with coated fibers[J]. Composites Science and Technology, 2000, 60(7): 1077-1084. [25] Hwang S J, Gibson R F. Prediction of fiber-matrix interphase effects on damping of composites using a micromechanical strain energy/finite element approach[J]. Composites Engineering, 1993, 3(10): 975-984. [26] Berthelot J M, Sefrani Y. Damping analysis of unidirectional glass and Kevlar fibre composites[J]. Composites Science and Technology, 2004, 64(9): 1261-1278. [27] Adams R D, Bacon D G C. Effect of fibre orientation and laminate geometry on the dynamic properties of CFRP[J]. Journal of Composite Materials, 1973, 7(4): 402-428. [28] Adams R D, Maheri M R. Dynamic flexural properties of anisotropic fibrous composite beams[J]. Composites Science and Technology, 1994, 50(4): 497-514. [29] Mahi A E, Assarar M, Sefrani Y, et al. Damping analysis of orthotropic composite materials and laminates[J]. Composites Part B (Engineering), 2008, 39(7-8): 1069-1076. [30] Wray S, Ashton J N, EI-Sobky H. An investigation of the influence of anisotropy and frequency on damping in short glass fibre reinforced polypropylene[J]. Composite Structures, 1990, 15(1): 43-60. [31] Yim J H. A damping analysis of composite laminates using the closed form expression for the basic damping of Poisson′s ratio[J]. Composite Structures, 1999, 46(4): 405-411. [32] Gibson R F, Chaturvedi S K, Sun C T. Complex moduli of aligned discontinuous fibre-reinforced polymer composites[J]. Journal of Materials Science, 1982, 17(12): 3499-3509. [33] Sun C T, Chaturvedi S K, Gibson R F. Internal damping of short-fiber reinforced polymer matrix composites[J]. Computers & Structures, 1985, 20(1-3): 391-400. [34] Suarez S A, Gibson R F, Sun C T, et al. The influence of fiber length and fiber orientation on damping and stiffness of polymer composite materials[J]. Experimental Mechanics, 1986, 26(2): 175-184. [35] Subramanian C, Deshpande S B, Senthilvelan S. Effect of reinforced fiber length on the damping performance of thermoplastic composites[J]. Advanced Composite Materials, 2011, 20(4): 319-335. [36] Tsai J L, Chi Y K. Effect of fiber array on damping behaviors of fiber composites[J]. Composites Part B (Engineering), 2008, 39(7-8): 1196-1204. [37] Chandra R, Singh S P, Gupta K. Micromechanical damping models for fiber-reinforced composites: a comparative study[J]. Composites Part A (Applied Science and Manufacturing), 2002, 33(6): 0-796. [38] YimJ H, Jr J W G. Damping characteristics of 0° and 90° AS4/3501-6 unidirectional laminates including the transverse shear effect[J]. Composite Structures, 2000, 50(3): 217-225. [39] Sefrani Y, Berthelot J M. Temperature effect on the damping properties of unidirectional glass fibre composites[J]. Composites Part B (Engineering), 2006, 37(4-5): 346-355. [40] Mead D J, Markus S. The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions[J]. Journal of Sound and Vibration, 1969, 12(1): 271-282. [41] Berthelot J M, Sefrani Y. Damping analysis of unidirectional glass fiber composites with interleaved, viscoelasticlayers: experimental investigation and discussion[J]. Journal of Composite Materials, 2006, 40(21): 1911-1932. [42] Chung D D L. Structural composite materials tailored for damping[J]. Journal of Alloys and Compounds, 2003, 355(1-2): 0-223. [43] Gibson R F, Chen Y, Zhao H. Improvement of vibration damping capacity and fracture toughness in composite laminates by the use of polymeric interleaves[J]. Journal of Engineering Materials & Technology, 2001, 123(3): 309-314. [44] Ganapathi M, Patel B P, Boisse P, et al. Flexural loss factors of sandwich and laminated composite beams using linear and nonlinear dynamic analysis[J]. Composites Part B Engineering, 1999, 30(3): 245-256. [45] Fotsing E R, Sola M, Ross A, et al. Lightweight damping of composite sandwich beams: Experimental analysis[J]. Journal of Composite Materials, 2013, 47(12): 1501-1511. [46] Biggerstaff J M. Vibrational damping of composite materials[J]. Pro Quest Dissertations and Theses, 2006, 67(1): 075-243. [47] Newmark S. Concept of complex stiffness applied to problems of oscillations with viscous and hysteretic damping[J]. Archive of Applied Mechanics, 1979, 48(5): 301-311. [48] Hashin Z. Complex moduli of viscoelastic composites-Ⅰ. General theory and application to particulate composites[J]. International Journal of Solids and Structures, 1970, 6(5): 539-552. [49] Crandall S H. The role of damping in vibration theory[J]. Journal of Sound and Vibration, 1970, 11(1): 3-0. [50] Crane R M, Jr J W G. Analytical model for prediction of the damping loss factor of composite materials[J]. Polymer Composites, 1992, 13(3): 179-190. [51] Barkanov E, Gassan J. Frequency response analysis of laminated composite beams[J]. Mechanics of Composite Materials, 1995, 30(5): 484-492. [52] Ungar, Eric E. Loss factors of viscoelastic systems in terms of energy concepts[J]. The Journal of the Acoustical Society of America, 1962, 34(5): 741-741. [53] Ni R G, Adams R D. The damping and dynamic moduli of symmetric laminated composite beams-theoretical and experimental results[J]. Journal of Composite Materials, 1984, 18(2): 104-121. [54] Saravanos D A, Chamis C C. Unified micromechanics of damping for unidirectional and off-axis fiber composites[J]. Journal of Composite Technology Research, 1990, 12(1): 31-40. [55] Kaliske M, Rothert H. Damping characterization of unidirectional fibre reinforced polymer composites[J]. Composites Engineering, 1995, 5(5): 551-567. [56] Aboudi J. A continuum theory for fiber-reinforced elastic-viscoplastic composites[J]. International Journal of Engineering Science, 1982, 20(5): 605-621. [57] Johnson C D, Kienholz D A. Finite element prediction of damping in structures with constrained viscoelastic layers[J]. AIAA Journal, 1982, 20(9): 1284-1290. [58] Hwang S J, Gibson R F. The effects of three-dimensional states of stress on damping of laminated composites[J]. Composite Science and Technology, 1991, 41(4): 379-393. [59] 高影. 纤维增强树脂基复合材料及其结构的阻尼性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. [60] 梁森, 李雪, 王东山, 等. 多层阻尼薄膜嵌入的共固化复合材料结构动力学性能[J]. 复合材料学报, 2015, 32(5): 1453-1460. [61] Santosa F, Symes W W. A model for a composite with anisotropic dissipation by homogenization[J]. International Journal of Solids and Structures, 1989, 25(4): 381-392. |
[1] | 张茜, 张一帆, 邹齐, 张鹏, 焦亚男, 安柳絮, 刘燕峰, 张代军, 郝俊杰, 陈利. 三维机织复合材料的连接性能与失效机制[J]. 复合材料科学与工程, 2024, 0(9): 5-11. |
[2] | 燕吉强, 谢宗佑, 李军, 邹齐, 雷帅, 曹铁男, 张代军. 铺层角度对聚酰亚胺纤维增强复合材料抗高速冲击性能影响[J]. 复合材料科学与工程, 2024, 0(9): 12-18. |
[3] | 吕续津, 霍红宇, 彭公秋, 张宝艳, 叶金秋, 刘勇. 静电纺丝PPESK纤维毡层间增韧碳纤维/环氧树脂复合材料[J]. 复合材料科学与工程, 2024, 0(9): 19-27. |
[4] | 郭妙才. 导电颗粒改性高韧性复合材料的层间结构和雷击损伤特性[J]. 复合材料科学与工程, 2024, 0(9): 28-36. |
[5] | 李沫莹, 郑林峰, 刘刚, 李梦娇, 姚佳楠. 碳纤维/聚芳醚酮热塑性复合材料与环氧涂层的附着力研究[J]. 复合材料科学与工程, 2024, 0(9): 37-42. |
[6] | 谢文博. 耐高温阻燃环氧树脂碳纤维复合材料性能研究[J]. 复合材料科学与工程, 2024, 0(9): 43-47. |
[7] | 黄大明, 唐立鑫, 孙军涛, 王炜. 残留单体丙烯腈对PAN基碳纤维制备的影响研究[J]. 复合材料科学与工程, 2024, 0(9): 48-51. |
[8] | 冯振辉, 王哲, 曾捷, 陈斌斌, 冯春乐, 周帆. 复合材料层板光纤冲击判位与载荷历程重构方法[J]. 复合材料科学与工程, 2024, 0(9): 52-56. |
[9] | 张德伟, 卫炜, 张聘, 王琦, 赵聪, 安鲁陵. 基于实测数据的飞机复合材料构件外形调控[J]. 复合材料科学与工程, 2024, 0(9): 57-66. |
[10] | 闫超, 戎笑远, 赵月青, 钱忠健. 复合材料共胶接帽形长桁加筋壁板的固化变形研究[J]. 复合材料科学与工程, 2024, 0(9): 67-72. |
[11] | 闫磊, 赵飞, 还大军, 张盛源, 王斌, 肖军. T700/PPS热塑缠绕复合材料NOL环拉-拉疲劳行为研究及寿命预测初探[J]. 复合材料科学与工程, 2024, 0(9): 73-81. |
[12] | 成李冰, 徐伟伟, 李博, 文诗琦. 复合材料肋零件微波固化成型工艺研究[J]. 复合材料科学与工程, 2024, 0(9): 82-86. |
[13] | 武海生, 罗锦涛, 顾轶卓, 孙天峰, 刘佳, 姚旗, 黎昱. 高模量碳纤维复合材料管件高低温交变环境结构稳定性研究[J]. 复合材料科学与工程, 2024, 0(9): 87-91. |
[14] | 付成建, 林松, 郭淑芬. 基于渐进损伤的Ⅳ型复合材料气瓶的爆破压强预测分析[J]. 复合材料科学与工程, 2024, 0(9): 92-97. |
[15] | 徐林, 刘传军, 赵崇书. 复合材料在民用飞机应用与发展趋势[J]. 复合材料科学与工程, 2024, 0(9): 98-104. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 182
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 95
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||