复合材料科学与工程 ›› 2024, Vol. 0 ›› Issue (11): 69-75.DOI: 10.19936/j.cnki.2096-8000.20241128.009

• 应用研究 • 上一篇    下一篇

风力机叶片结构拓扑与铺层分级优化设计研究

汪泉1, 夏威1*, 杨建忠2, 徐唐杰1, 王冯云1   

  1. 1.湖北工业大学 机械工程学院,武汉 430068;
    2.渤海装备辽河热采机械公司,盘锦 124010
  • 收稿日期:2023-08-07 出版日期:2024-11-28 发布日期:2025-01-14
  • 通讯作者: 夏威(1998—),男,硕士研究生,研究方向为风力发电机叶片关键技术,290314820@qq.com。
  • 作者简介:汪泉(1984—),男,博士研究生,副教授,硕士生导师,研究方向为机械系统优化设计、风力发电机叶片关键技术、机器人技术。
  • 基金资助:
    国家自然科学基金面上项目(51975190);校级绿色工业科技引领计划-优秀青年基金(XJ2021001201)

Study on hierarchical optimized design of structural topology and layer for the wind turbine blade

WANG Quan1, XIA Wei1*, YANG Jianzhong2, XU Tangjie1, WANG Fengyun1   

  1. 1. School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China;
    2. Bohai Equipment Liaohe Thermal Mining Machinery Co., Ltd., Panjin 124010, China
  • Received:2023-08-07 Online:2024-11-28 Published:2025-01-14

摘要: 针对目前大型风力机叶片拓扑结构与内部铺层参数相互独立设计,导致不能最大限度地降低叶片重量的问题,本文提出风力机叶片结构拓扑与铺层参数分级优化的设计策略。以5 MW风力机叶片为优化对象,考虑七种极限载荷工况,基于密度法对叶片进行拓扑结构优化。第一级优化结果显示叶片具有主梁非对称及腹板偏移等特性。将拓扑结构参数与材料铺层参数作为第二级优化变量,将叶片重量最小作为优化目标,以蔡-吴(Tsai-Wu)失效因子、叶尖位移、固有频率作为约束条件,利用粒子群算法对叶片拓扑结构和铺层参数进行联合优化。结果表明:与参考叶片相比,在满足叶片结构强度及变形条件下,叶片重量减少了12.1%,叶尖位移减少了9.5%。本研究对于风电叶片轻量化设计具有重要的参考价值。

关键词: 风力机叶片, 拓扑结构, 分级优化, 极限载荷, 铺层参数, 复合材料

Abstract: In response to the current issue of the independent design of the topology structure and internal layer parameters of large-scale wind turbine blades, which hinders the maximum reduction of blade weight, this paper proposes a hierarchical optimization strategy for the design of wind turbine blade structure topology and layer parameters. Taking a 5 MW wind turbine blade as the optimization target and considering 7 extreme load cases, the blade’s topology structure is optimized based on the density method. The results of the first-level optimization show that the blade possesses characteristics such as asymmetric main beams and offset webs. Subsequently, treating the topology structure parameters and material layer parameters as second-level optimization variables, with the minimization of blade weight as the optimization objective and the Tsai-Wu’s failure factor, blade tip displacement, and natural frequency as constraints, a particle swarm algorithm is employed to jointly optimize the blade’s topology structure and layer parameters. The results indicate that, compared to the reference blade and while satisfying the blade’s structural strength and deformation requirements, the blade weight is reduced by 12.1% and the blade tip displacement is reduced by 9.5%. This study holds significant reference value for the lightweight design of wind turbine blades.

Key words: wind turbine blades, topology structure, hierarchical optimization, extreme load, layer parame-ters, composites

中图分类号: