[1] 从鹏松, 张国锋, 郭洁, 等. 电缆接头防护材料的性能测试及应用研究[J]. 合成纤维, 2023, 52(5): 76-79, 84. [2] 孟繁博, 陈向荣, 洪泽林, 等. 界面喷涂Mg(OH)2对直流电缆工厂接头绝缘交接层直流电气性能的影响[J]. 电工技术学报, 2023, 38(14): 1-12. [3] 苏俊亮, 包淑珍, 张珏, 等. 高导热填充材料对高压电缆接头温度的影响[J]. 电线电缆, 2023(1): 12-16. [4] 项恩新, 周婉亚, 王科, 等. 高压电缆中间接头外半导电层缺陷放电研究[J]. 高压电器, 2020, 56(3): 135-140. [5] 张承信, 李强, 韩夏清. 一种新型电缆防火防爆盒的研制[J]. 华东电力, 2013, 41(7): 1526-1528. [6] 丁亮, 邓显波, 应辉, 等. 高压电缆接头保护盒结构设计与性能验证[J]. 电工技术, 2020(4): 91-93, 97. [7] 刘淡冰, 朱五洲, 廖雁群, 等. 电缆接头存在的问题以及柔性电缆防爆盒设计[J]. 电工技术, 2017(3): 40-41. [8] 宋传江, 王虎. 玻璃纤维增强复合材料工程化应用进展[J]. 中国塑料, 2015, 29(3): 9-15. [9] DAVID J, LUCY V, KAREL B, et al. Development of novel environmental friendly polyurethane foams[J]. Environmental Chemistry Letters, 2010, 8(4): 1300-1312. [10] YANG X, ZHU J, YANG D, et al. High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers[J]. Composites Part B: Engineering, 2020, 185: 107784. [11] CHEN T, DENG L. Thermal conductive and dielectric properties of epoxy resin with bimetal filler of Zn-Cu particle[J]. Journal of Materials Science Materials in Electronics, 2019, 30(10): 9775-9784. [12] JAROSINSKI L, RYBAK A, GASKA K, et al. Enhanced thermal conductivity of graphene nanoplatelets epoxy composites[J]. Materials Science-Poland, 2017, 35(2): 382-389. [13] GUO L, ZHANG Z, KANG R, et al. Enhanced thermal conductivity of epoxy composites filled with tetrapod-shaped ZnO[J]. RSC Advances, 2018(8): 366-375. [14] XING W, CHEN L, ZHOU M, et al. Preparation of boron nitride/graphene composite thermal conductive filler and study on flame retardant, thermal conductivity and insulation properties of epoxy resin composites[J]. SCIENTIA SINICA Chimica, 2023, 53: 207-216. [15] XU F, CUI Y, BAO D, et al. A 3D interconnected Cu network supported by carbon felt skeleton for highly thermally conductive epoxy composites[J]. Chemical Engineering Journal, 2020, 388: 124287. [16] VU M C, THIEU N A T, CHOI W K, et al. Ultralight covalently interconnected silicon carbide aerofoam for high performance thermally conductive epoxy composites[J]. Composites Part A: Applied Science and Manufacturing, 2020, 138: 106028. [17] ZHANG C X, LI Q, HAN X Q. Development of a new type of cable fire and explosion prevention box[J]. East China Electric Power, 2013, 41(7): 1526-1528. [18] American Society for Testing and Materials. American standard test methods for void content of reinforced plastics: ASTM D2374[S]. West Conshohocken: ASTM International, 2016. [19] 国家标准化管理委员会. 纤维增强塑料平均线膨胀系数试验方法: GB/T 2572—2005[S]. 北京: 中国标准出版社, 2005. [20] 国家标准化管理委员会. 固体绝缘材料体积电阻率和表面电阻率试验方法: GB/T 1410—2006[S]. 北京: 中国标准出版社, 2006. [21] 国家标准化管理委员会. 干固体绝缘材料耐高电压、小电流电弧放电的试验: GB/T 1411—2002[S]. 北京: 中国标准出版社,2006. [22] 国家标准化管理委员会. 各向同性和正交各向异性纤维增强复合材料的试验方法: GB/T 1040.4—2006[S]. 北京: 中国标准出版社, 2006. [23] 杨萌, 邓伟, 李婉玉, 等. BN和Al2O3@BaTiO3纤维协同改性聚偏氟乙烯复合材料的介电与导热性能[J]. 复合材料学报, 2023, 40(6): 3312-3321. [24] XUE Y, DAI P, ZHOU M, et al. Multifunctional superelastic foam-like boron nitride nanotubular cellular-network architectures[J]. ACS Nano, 2017, 11(1): 558-568. [25] 郑舒方, 王玉印, 郭兰迪, 等. 具有三维连续网络结构的聚合物基导热复合材料研究进展[J]. 复合材料学报, 2023, 40(12): 6528-6544. [26] GUO Y, RUAN K, SHI X, et al. Factors affecting thermal conductivities of the polymers and polymer composites: A review[J]. Composites Science and Technology, 2020, 193(6402): 108134. [27] 安乐, 赵文哲, 金宸宇. 工业用环氧树脂及其复合材料的闭环回收再制造[J]. 复合材料学报, 2023, 40(5): 2575-2586. [28] 高建, 袁正凯, 虞锦洪, 等. 氮化硼纳米片/环氧树脂复合材料的制备与热性能研究[J]. 绝缘材料, 2014, 47(2): 19-24. [29] 刘云鹏, 李乐, 张铭嘉, 等. 复合绝缘横担界面特性检测研究现状[J]. 电工技术学报, 2020, 35(2): 408-424. [30] REDDY M P, MANAKARI V, PARANDE G, et al. Enhancing compressive, tensile, thermal and damping response of pure Al using BN nanoparticles[J]. Journal of Alloys and Compounds, 2018, 762: 398-408. [31] WANG X B, WENG Q H, WANG X, et al. Biomass-directed synthesis of 20 g high-quality boron nitride nanosheets for thermoconductive polymeric composites[J]. ACS Nano, 2014, 8(9): 9081-9088. |