复合材料科学与工程 ›› 2025, Vol. 0 ›› Issue (10): 83-90.DOI: 10.19936/j.cnki.2096-8000.20251028.013

• 航空复合材料 • 上一篇    下一篇

飞机平尾夹芯蜂窝复合材料结构的超声智能检测技术

涂思敏1, 陈振华1*, 章俊燕2, 涂东坤2, 徐云林2, 卢超1   

  1. 1.南昌航空大学 无损检测技术教育部重点实验室,南昌 330063;
    2.江西洪都航空工业集团有限责任公司,南昌 330000
  • 收稿日期:2024-09-20 出版日期:2025-10-28 发布日期:2025-12-02
  • 通讯作者: 陈振华(1982—),男,博士,教授,硕士生导师,研究方向为超声波无损检测技术及系统,zhenhuachen@yeah.net。
  • 作者简介:涂思敏(2000—),女,硕士研究生,研究方向为超声波无损检测技术及系统。
  • 基金资助:
    国家自然科学基金(12464059);江西省重点研发计划项目(20212BBE51006)

Ultrasonic intelligent testing technology for sandwich honeycomb composite structure of aircraft horizontal tail

TU Simin1, CHEN Zhenhua1*, ZHANG Junyan2, TU Dongkun2, XU Yunlin2, LU Chao1   

  1. 1. Key Laboratory of Nondestructive Testing of Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China;
    2. Jiangxi Hongdu Aviation Industry Group, Nanchang 330000, China
  • Received:2024-09-20 Online:2025-10-28 Published:2025-12-02

摘要: 飞机平尾的蜂窝复合材料结构尺寸大、材料结构复杂、质量要求高,喷水式超声聚焦成像检测技术可实现对蜂窝结构的成像检测;而大量检测图像的评价依赖于技术人员丰富的工程经验和高强度的工作,不可避免地会因主观因素的影响导致评价可靠性变差。由此,提出基于深度学习网络的飞机平尾蜂窝复合材料超声C扫描检测图像的智能识别技术。首先,通过喷水式超声聚焦检测方法采集飞机平尾C扫描检测图像,构建和扩充飞机平尾超声检测图像数据集;其次,基于检测图像对应的检测信号幅度分布,将检测图像按粘接完好性程度划分为三个目标区域类别;第三,构建Faster R-CNN网络并对其进行优化,形成蜂窝复合材料结构超声C扫描区域微小特征变化的智能识别网络;最后,通过试验方法测定智能识别模型的性能,验证其评价蜂窝结构超声C扫描图像的能力。研究结果表明:基于深度学习的智能模型对蜂窝复合材料分类识别的平均准确率均值达到88.2%,对粘接状态最差区域(三类区域)的识别平均准确率可达91.9%,能够用于分类统计蜂窝复合材料结构超声C扫描检测图像。

关键词: 蜂窝复合材料, Faster R-CNN, 喷水式超声聚焦检测, 深度学习, 智能识别

Abstract: The honeycomb composite structure of aircraft horizontal tail has large size, complex material structure and high quality requirements. The water-jet ultrasonic focusing imaging detection technology can realize the imaging detection of honeycomb structure. The evaluation of a large number of detected images depends on the rich engineering experience and high-intensity work of technicians, which inevitably leads to poor evaluation reliability due to the influence of subjective factors. Therefore, an intelligent recognition technology of ultrasonic C-scan detection image of honeycomb composite material of aircraft horizontal tail based on deep learning network is proposed. Firstly, the C-scan detection image of the horizontal tail of the aircraft is collected by the water-jet ultrasonic focusing detection method, and the data set of the ultrasonic detection image of the horizontal tail of the aircraft is constructed and expanded. Secondly, based on the amplitude distribution of the detection signal corresponding to the detection image, the detection image is divided into three target area categories according to the degree of bonding integrity. Thirdly, the Faster R-CNN network is constructed and optimized to form an intelligent recognition network for small feature changes in the ultrasonic C-scan area of honeycomb composite structures. Finally, the performance of the intelligent recognition model was measured by experimental methods to verify its ability to evaluate the ultrasonic C-scan images of honeycomb structures. The research results show that the average accuracy of the intelligent model based on deep learning for the classification and recognition of honeycomb composite materials reaches 88.2%, and the average accuracy of the worst bonding area (three class of region) can reach 91.9%, which can be used for classification and statistics of ultrasonic C-scan detection images of honeycomb composite structures.

Key words: honeycomb composites, Faster R-CNN, water-jet ultrasonic focus testing, deep learning, intelligent recognition

中图分类号: