[1] SELZER R, FRIEDRICH K. Mechanical properties and failure behaviour of carbon fibre-reinforced polymer composites under the influence of moisture[J]. Composites Part A: Applied Science & Manufacturing, 1997, 28(6): 595-604. [2] ALAM P, ROBERT C, BRÁDAIGH C M Ó.Tidal turbine blade composites-A review on the effects of hygrothermal aging on the properties of CFRP[J]. Composites Part B: Engineering, 2018, 149: 248-259. [3] WANG Y, HAHN T H. AFM characterization of the interfacial properties of carbon fiber reinforced polymer composites subjected to hygrothermal treatments[J]. Composites Science and Technology, 2007, 67(1): 92-101. [4] GAUTIER L, MORTAIGNE B, BELLENGER V. Interface damage study of hydrothermally aged glass-fibre-reinforced polyester composites[J]. Composites Science Technology, 1999, 59(16): 2329-2337. [5] THOMASON J L. The interface region in glass fibre-reinforced epoxy resin composites: 1. Sample preparation, void content and interfacial strength[J]. Composites, 1995, 26(7): 467-475. [6] COX H L. The elasticity and strength of paper and other fibrous materials[J]. British Journal of Applied Physics, 1952, 3(3): 72-79. [7] ROSEN B W. Tensile failure of fibrous composites[J]. AIAA Journal, 1964, 2(11): 1985-1991. [8] KELLY A, TYSON W R. Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum[J]. Journal of the Mechanics and Physics of Solids, 1965, 13(6): 329-350. [9] VARNA J, JOFFE R, BERGLUND L A. Interfacial toughness evaluation from the single-fiber fragmentation test[J]. Composites Science and Technology, 1996, 56: 1105-1109. [10] NISHIKAWA M, OKABE T, TAKEDA N, et al. Micromechanics of the fragmentation process in single-fiber composites[J]. Modelling and Simulation in Materials Science and Engineering, 2008, 16(5): 1-19. [11] GRACIANI E, MANTIČ V, PARÍS F, et al. Numerical analysis of debond propagation in the single fibre fragmentation test[J]. Composites Science and Technology, 2009, 69(15-16): 2514-2520. [12] MEER F P V D, RAIJMAEKERS S, ROCHA I B C M. Interpreting the single fiber fragmentation test with numerical simulations[J]. Composites Part A: Applied Science & Manufacturing, 2019, 118: 259-266. [13] AHMADVASHAGHBASH S, BREITE C, MEHDIKHANI M, et al. Longitudinal debonding in unidirectional fibre-reinforced composites: numerical analysis of the effect of interfacial properties[J]. Composites Science and Technology, 2022, 218: 109117. [14] HEUVEL P W J V D, PEIJS T, YOUNG R J. Failure phenomena in two-dimensional multi fibre microcomposites: 2. A Raman spectroscopic study of the influence of inter-fibre spacing on stress concentrations[J]. Composites Science & Technology, 1997, 57(8): 899-911. [15] SCHBERL E, BREITE C, MELNIKOV A, et al. Fibre-direction strain measurement in a composite ply under quasi-static tensile loading using digital volume correlation and in situ synchrotron radiation computed tomography[J]. Composites Part A: Applied Science and Manufacturing, 2020, 137(5-6): 105935. [16] SWOLFS Y, MCMEEKING R M, VERPOEST I, et al. Matrix cracks around fibre breaks and their effect on stress redistribution and failure development in unidirectional composites[J]. Composites Science and Technology, 2015, 108: 16-22. [17] YAMAMOTO G, ONODERA M, KOIZUMI K, et al. Considering the stress concentration of fiber surfaces in the prediction of the tensile strength of unidirectional carbon fiber-reinforced plastic composites[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 499-509. [18] NEDELE M R, WISNOM M R. Stress concentration factors around a broken fibre in a unidirectional carbon fibre-reinforced epoxy[J]. Composites, 1994, 25: 549-557. [19] XU K L, LIU L L, ZHAO Z H, et al. Development of a hygrothermal constitutive model for epoxy resin considering the glass transition temperature and its applications[J]. International Journal of Mechanical Sciences, 2024, 261: 108697. [20] MELRO A R, CAMANHO P P, PIRES F M A, et al. Micromechanical analysis of polymer composites reinforced by unidirectional fibres: part Ⅰ-Constitutive modelling[J]. International Journal of Solids and Structures, 2013, 50(11-12): 1897-1905. [21] XU K, CHEN W, LIU L, et al. A hierarchical multiscale strategy for analyzing the impact response of 3D braided composites[J]. International Journal of Mechanical Sciences, 2020, 193(12): 106167. [22] GRACIANI E, MANTIC V, PARÍS F, et al. Numerical analysis of debond propagation in the single fibre fragmentation test[J]. Composites Science and Technology, 2009, 69: 2514-2520. [23] PUPURS A, KRASNIKOVS A, VARNA J. Energy release rate based fiber/matrix debond growth in fatigue. Part Ⅰ: self-similar crack growth[J]. Mechanics of Advanced Materials and Structures, 2013, 20: 276-287. [24] PUPURS A, KRASNIKOVS A, VARNA J. Energy release rate based fiber/matrix debond growth in fatigue. Part Ⅱ: debond growth analysis using paris law[J]. Mechanics of Advanced Materials and Structures, 2013, 20: 288-296. [25] ZHUANG L, PUPURS A, VARNA J, et al. Fiber/matrix debond growth from fiber break in unidirectional composite with local hexagonal fiber clustering[J]. Composites Part B: Engineering, 2016, 101: 124-131. [26] BULLEGAS G, PINHO S T, PIMENTA S. Engineering the translaminar fracture behaviour of thin-ply composites[J]. Composites Science and Technology, 2016, 131: 110-122. [27] YU B, KATAFIASZ T J, NGUYEN G, et al. Hygrothermal effects on the translaminar fracture toughness of a highly toughened aerospace CFRP: experimental characterisation and model prediction[J]. Composites Part A: Applied Science and Manufacturing, 2021, 150: 106582. [28] JIA Y Y, YAN W Y, LIU H-Y. Carbon fibre pullout under the influence of residual thermal stresses in polymer matrix composites[J]. Computational Materials Science, 2012, 62: 79-86. [29] YALLEE R B, YOUNG R J. Evaluation of interface fracture energy for single-fibre composites[J]. Composites Science and Technology, 1998, 58(12): 1907-1916. [30] XU K L, CHEN W, ZHU X Y, et al. Chemical, mechanical and morphological investigation on the hygrothermal aging mechanism of a toughened epoxy[J]. Polymer Testing, 2022, 110: 107548. |