[1] 张超, 许希武, 许晓静. 三维多向编织复合材料宏细观力学性能有限元分析研究进展[J]. 复合材料学报, 2015, 32(5): 1241-1251. [2] 陈利, 赵世博, 王心淼. 三维纺织增强材料及其在航空航天领域的应用[J]. 纺织导报, 2018(增刊1): 80-87. [3] 吴亚波, 江小州, 刘帅, 等. 三维编织复合材料力学性能研究进展[J]. 科技与创新, 2021(13): 108-113. [4] WANG X F, WANG X W, ZHOU G M, et al. Multi-scale analyses of 3D woven composite based on periodicity boundary conditions[J]. Journal of Composite Materials, 2007, 41(14): 1773-1788. [5] WAN Y, SUN B, GU B. Multi-scale structure modeling of damage behaviors of 3D orthogonal woven composite materials subject to quasi-static and high strain rate compressions[J]. Mechanics of Materials, 2016, 94: 1-25. [6] JIA X, XIA Z, GU B. Nonlinear viscoelastic multi-scale repetitive unit cell model of 3D woven composites with damage evolution[J]. International Journal of Solids and Structures, 2013, 50(22): 3539-3554. [7] PATEL K D, WAAS M A,YEN C. Direct numerical simulation of 3D woven textile composites subjected to tensile loading: an experimentally validated multiscale approach[J]. Composites Part B: Engineering, 2018, 152: 102-115. [8] DAI S, CUNNINGHAM P. Multi-scale damage modelling of 3D woven composites under uni-axial tension[J]. Composite Structures, 2016, 142: 298-2312. [9] 王新峰, 陈国军, 周光明. 三维机织复合材料拉伸损伤[J]. 南京航空航天大学学报, 2010, 42(1): 1-7. [10] SALEH N M, LUBINEAU G, POTLURI P, et al. Micro-mechanics based damage mechanics for 3D orthogonal woven composites: experiment and numerical modelling[J]. Composite Structures, 2016, 156: 115-124. [11] DAI S, CUNNINGHAM P, MARSHALL S, et al. Influence of fibre architecture on the tensile, compressive and flexural behaviour of 3D woven composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 69: 195-207. [12] WARREN C K, LOPEZ-ANIDO A R, GOERING J. Experimental investigation of three-dimensional woven composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 73: 242-259. [13] SUN R J, ZHENG T, YAO Y D, et al. Experimental investigation on shear damage evolution of 3D woven composites using in situ computed tomography and multi-scale digital image correlation[J]. Composite Structures, 2023, 319: 117159. [14] ZHENG T, HUANG J Z, GUO L C, et al. A combined experimental and numerical approach to investigate the failure behaviors of 3D woven composites under biaxial tensile loading[J]. Composites Science and Technology, 2023, 236: 109974. [15] TRIPATHI L, BEHERA B K. Comparative analysis of the mechanical performance of 3D woven honeycomb composites produced in warp and weft directions[J]. The Journal of The Textile Institute, 2024, 115(4): 667-678. [16] ZHENG T, GUO L C, SUN R J, et al. Investigation on the effect of interface properties on compressive failure behavior of 3D woven composites through micromechanics-based multiscale damage model[J]. Composite Structures, 2023, 320: 117186. [17] ZHENG T, GUO L C, BENEDICTUS R, et al. Micromechanics-based multiscale progressive failure simulation of 3D woven composites under compressive loading with minimal material parameters[J]. Composites Science and Technology, 2022, 219: 109227. [18] CHAMIS C C. Mechanics of composite materials: past, present and future[J]. Journal of Composites Technology and Research, 1989, 11(1): 3-14. [19] HUANG Z M. Simulation of the mechanical properties of fibrous composites by the bridging micromechanics model[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(2): 143-172. [20] 黄争鸣. 桥联理论研究的最新进展[J]. 应用数学和力学, 2015, 36(6): 563-581. [21] 吕青泉, 赵振强, 李超, 等. 2.5D机织复合材料的渐进损伤与失效模拟[J]. 复合材料学报, 2021, 38(8): 2747-2757. [22] XIA Z, ZHOU C, YONG Q, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites[J]. International Journal of Solids and Structures, 2006, 43(2): 266-278. [23] HASHIN Z. Failure criteria for unidirectional fiber composite[J]. Journal of Applied Mechanics, 1980, 47: 329-334. [24] CAMANHO P P, MATTHEWS F L. A progressive damage model for mechanically fastened joints in composite laminates[J]. Journal of Composite Materials, 1999, 33(24): 2248-2280. |