[1] THOMAS J, QIDWAI S, POGUE W, et al. Multifunctional structure-battery composites for marine systems[J]. Journal of Composite Materials, 2013, 47(1): 5-26. [2] WILHELM J, NIKLAS I, DAN Z, et al. Multifunctional performance of a carbon fiber UD lamina electrode for structural batteries[J]. Composites Science and Technology, 2018, 168: S0266353818306055. [3] WANG Y, PENG C, ZHANG W. Mechanical and electrical behavior of a novel satellite multifunctional structural battery[J]. Journal of Scientific and Industrial Research, 2014, 73(3): 163-167. [4] 吕纯池. 新能源电动汽车核心技术发展现状与趋势综述[J]. 科技与创新, 2020(17): 86-87. [5] 黄健航, 王永刚, 夏永姚. 新型储能化学电源研究进展[J]. 电源技术, 2020, 44(6): 793-798. [6] 李素敏, 张新立. 多功能结构-储能一体化复合材料的研究现状及进展[J]. 化学工程与技术, 2019, 9(5): 6. [7] 胡芸, 谢凯, 盘毅, 等. 结构电池的研究现况[J]. 电源技术, 2008(12): 889-891. [8] MUHAMMADA Q. Structure battery multifunctional composite design[J]. Society of Photo-Optical Instrumentation Engineers, 2002, 48(98): 180. [9] LIU P, SHERMAN E, JACOBSEN A, et al. Design and fabrication of multifunctional structural batteries[J]. Journal of Power Sources, 2009, 189(1): 646-650. [10] EKSTEDT S, WYSOCKI M, ASP L E, et al. Structural batteries made from fiber reinforced composites[J]. Plastics, Rubber and Composites, 2010, 39(3-5): 148-150. [11] CARLSON T. Multifunctional composite materials: Design, manufacture and experimental characterizations[D]. Lulea: Lulea Tekniska University, 2013. [12] ASP L, BISMARCK A, LINDBERG G, et al. Abattery half cell, a battery and their manufacture: EP20131068026[P]. 2013-08-30. [13] THOMAS J P, QIDWAI M A. Mechanical design and performance of composite multifunctional materials[J]. Acta Materialia, 2004, 52(8): 2155-2164. [14] THOMAS J P, QIDWAI M A. The design and application of multifunctional structure-battery materials systems[J]. JOM, 2005, 57(3): 18-24. [15] CHRISTODOULOU L, VENABLES J D. Multifunctional material systems: The first generation[J]. JOM, 2003, 55(12): 39-45. [16] LYMAN P C, FEAVER T L. PowerCore combining structure and batteries for increased energy to weight ratio[J]. Aerospace & Electronic Systems Magazine IEEE, 1998, 13(9): 39-42. [17] LIU P, SHERMAN E, JACOBSEN A. Design and fabrication of multifunctional structural batteries[J]. Journal of Power Sources, 2009, 189(1): 646-650. [18] SNYDER J F, GIENGER E B, WETZEL E D. Performance metrics for structural composites with electrochemical multifunctionality[J]. Journal of Composite Materials, 2015. [19] SHIRSHOVA N, BISMARCK A, CARREYETTE S, et al. Structural supercapacitor electrolytes based on bicontinuous ionic liquid-epoxy resin systems[J]. Journal of Materials Chemistry A, 2013, 1(48): 15300-15309. [20] IHRNER N, JOHANNISSON W, SIELAND F, et al. Structural lithium ion battery electrolytes via reaction induced phase-separation[J]. Journal of Materials Chemistry A, 2017: 10. 1039. C7TA04684G. [21] ZHAO Y, ZHAO D, ZHANG T, et al. Preparation and multifunctional performance of carbon fiber-reinforced plastic composites for laminated structural batteries[J]. Polymer Composites, 2020. [22] LADPLIA P, NARDARIA R, KOPSAFTOPOULOS F, et al. Multifunctional energy storage composite structures with embedded lithium-ion batteries[J]. Journal of Power Sources, 2019, 414(5): 517-529. [23] PEREIRA T, GUO Z, NIEH S, et al. Embedding thin-film lithium energy cells in structural composites[J]. Composites ence & Technology, 2008, 68(7-8): 1935-1941. [24] ZHANG L, LU S, WANG X, et al. Manufacture and mechanical properties of sandwich structure-battery composites[J]. Journal of Polymer Engineering, 2019, 39(9): 838-843. [25] 王朝阳, 杨向涛, 徐祥博, 等. 结构储能碳纤维复合材料设计及其在无人机上的应用[J]. 航空制造技术, 2020, 63(18): 84-90, 101. [26] 李世超, 张正, 巴文兰, 等. 超薄预浸料对碳纤维/环氧树脂复合材料导电性能的影响[J]. 复合材料学报, 2020, 37(3): 539-545. [27] WU H, LI S, ZHANG J, et al. Electrical resistivity response of unidirectional thin-ply carbon fiber reinforced polymers[J]. Composite Structures, 2019, 228: 111342. [28] 农谷珍. 超级电容器电极材料的制备及电化学性能研究[D]. 大连: 大连理工大学, 2009. [29] 曹小卫, 吴明霞, 安仲勋, 等. 一步法腐蚀铝箔对超级电容器性能影响[J]. 电池工业, 2012(3): 17-20, 34. [30] 周海生. 双电层电容器电极材料及其制备工艺与性能研究[D]. 长沙: 中南大学, 2013. [31] CHRISTOPHERSEN J P. Battery test manual for electric vehicles, idaho national laboratory: INL/EXT-15-34184[R]. Idaho: INL, 2015. [32] 鲁群. 超级电容器电极材料的制备及其电化学性能研究[D]. 湖南: 湘潭大学, 2018. [33] 陈辉. 生物质基炭材料的设计、制备及其电化学性能研究[D]. 石河子: 石河子大学, 2018. [34] 张君贤. 碳纤维基复合电极材料的制备及其电化学性能研究[D]. 上海: 东华大学, 2018. [35] 余威, 谢凯, 胡芸. 受力条件下平板聚合物锂离子电池的性能[J]. 电池, 2007(6): 31-33. [36] MIAO L, SONG Z, ZHU D, et al. Recent advances in carbon-based supercapacitors[J]. Materials Advances, 2020, 1(5). [37] ZHOU Z, LIU T, KHAN A U, et al. Block copolymer-based porous carbon fibers[J]. Science Advances, 2019, 5(2). [38] LI D, ZHAO L, CAO X, et al. Nickel-catalyzed formation of mesoporous carbon structure promoted capacitive performance of exhausted biochar[J]. Chemical Engineering Journal, 2021: 126856. [39] 禹兴海, 罗齐良, 潘剑, 等. 一种生物炭基柔性固态超级电容器的制备及性能研究[J]. 化工学报, 2019, 70(9): 3590-3600. [40] CHEN S, ZHU J W, WU X, et al. Graphene oxide-MnO2 nanocomposites for supercapacitors[J]. ACS Nano, 2010, 4(5): 6212-6218. [41] TIRUYE G A, PALMA J, THOMAS B, et al. Functional porous carbon nanospheres from sustainable precursors for high performance supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(31): 16263-16272. |