复合材料科学与工程 ›› 2020, Vol. 0 ›› Issue (10): 110-121.
倪迎鸽1, 邹鹏2*, 毕雪2
收稿日期:
2020-07-06
出版日期:
2020-10-28
发布日期:
2020-10-28
通讯作者:
邹鹏(1989-),男,博士,工程师,主要从事复合材料结构力学方面的研究,zoupeng_0625@126.com。
作者简介:
倪迎鸽(1987-),女,博士,讲师,主要从事变体飞机的一体化设计以及声发射损伤检测技术方面的研究。
基金资助:
NI Ying-ge1, ZOU Peng2*, BI Xue2
Received:
2020-07-06
Online:
2020-10-28
Published:
2020-10-28
摘要: 复合材料加筋壁板由于其薄壁、承载效率高的特点而在现代飞机中得到了广泛应用,但在制造和使用过程中不可避免地会遭受低速冲击而产生损伤。因此,解决含损伤复合材料加筋壁板的承载能力预测问题成为保证复合材料飞机结构使用安全的重要问题。本文从试验和仿真模拟两方面,对复合材料加筋壁板的承载能力进行了归纳总结。在试验研究中分析了四种典型的冲击后加载试验形式,包括冲击后压缩、冲击后压缩疲劳、冲击后剪切以及冲击后剪切疲劳。同时从加筋壁板的建模方法、损伤的建模方法、损伤判据和性能退化方法等四个方面对承载能力预测进行了汇总分析,并指出了目前利用仿真模拟手段进行承载能力预测中存在的问题,以期为复合材料加筋壁板承载能力预测的进一步研究提供有益参考。
中图分类号:
倪迎鸽, 邹鹏, 毕雪. 含损伤复合材料壁板承载能力的试验与仿真模拟现状[J]. 复合材料科学与工程, 2020, 0(10): 110-121.
NI Ying-ge, ZOU Peng, BI Xue. EXPERIMENTAL AND SIMULATION STATUS OF BEARING CAPACITY OF COMPOSITE PANELS WITH DAMAGE[J]. Composites Science and Engineering, 2020, 0(10): 110-121.
[1] FARDIN E, CHRISTOS K. An efficient approach to determine compression after impact strength of quasi-isotropic composite laminates[J]. Composites Science and Technology, 2014, 98: 28-35. [2] VIEILLE B, CASADO V M, BOUVET C. Influence of matrix toughness and ductility on the compression-after-impact behavior of woven-ply thermoplastic- and thermosetting composites: A comparative study[J]. Composite Structures, 2014, 110: 207-18. [3] ALAATTIN A, MEHMET A, FAITH T. Impact and post impact (CAI) behavior of stitched woven-knit hybrid composites[J]. Composite Structures, 2014, 116: 243-53. [4] FENG Y, ZHANG H Y, TAN X F, et al. Effect of impact damage positions on the buckling and post-buckling behaviors of stiffened composite panel[J]. Composite Structures, 2016, 155: 184-196. [5] BONI L, FANTERIA D, LANCOTTI A. Post-buckling behaviour of flat stiffened composite panels: Experiments vs. analysis[J]. Composite Structures, 2012, 94(12): 3421-3433. [6] SUN W, GUAN Z D, YANG T O, et al. Effect of stiffener damage caused by low velocity impact on compressive buckling and failure modes of T-stiffened composite panels[J]. Composite Structures, 2018, 184: 198-210. [7] WANG X M, CAO W, DENG C H, et al. Experimental and numerical analysis for the post-buckling behavior of stiffened composite panels with impact damage[J]. Composite Structures, 2015, 133: 840-846. [8] AL-AZZAWI A S M, MCCRORY J, KAWASHITA L F, et al. Buckling and postbuckling behaviour of glare laminates containing splices and doublers. Part 1: Instrumented tests[J]. Composite Structures, 2017, 176: 1158-1169. [9] AL-AZZAWI A S M, KAWASHITA L F, FEATHERSTON C A, et al. Buckling and postbuckling behaviour of glare laminates containing splices and doublers. Part 2: Numerical modelling[J]. Composite Structures, 2017, 176: 1170-1187. [10] MASOOD S N, VISHAKH R, VISWAMURTHY S R, et al. Influence of stiffener configuration on post-buckled response of composite panels with impact damages[J]. Composite Structures, 2018, 194: 433-444. [11] LI N, CHEN P H. Experimental investigation on edge impact dam-age and compression-after-impact (CAI) behavior of stiffened composite panels[J]. Composite Structures, 2016, 138: 134-150. [12] FENG Y, HE Y T, ZHANG H Y, et al. Effect of fatigue loading on impact damage and buckling/post-buckling behaviors of stiffened composite panels under axial compression[J]. Composite Structures, 2017, 164: 248-262. [13] FENG Y, HE Y T, TAN X F, et al. Experimental investigation on different positional impact damages and shear-after-impact (SAI) behaviors of stiffened composite panels[J]. Composite Structures, 2017, 178: 232-245. [14] BAI R X, LEI Z K, WEI X, et al. Numerical and experimental study of dynamic buckling behavior of a J-stiffened composite panel under in-plane shear[J]. Composite Structures, 2017, 166: 96-103. [15] LEI Z K, BAI R X, TAO W, et al. Optical measurement on dynamic buckling behavior of stiffened composite panels under in-plane shear[J]. Optics and Lasers in Engineering, 2016, 87: 111-119. [16] RAJU G, WU Z, WEAVER P M. Buckling and postbuckling of variable angle tow composite plates under in-plane shear loading[J]. International Journal of Solids and Structures, 2015, 34: 270-287. [17] CHEN Q, QIAO P. Post-buckling analysis of composite plates under combined compression and shear loading using finite strip method[J]. Finite Elements in Analysis Design, 2014, 83: 33-42. [18] ZHANG T J, LI S L, CHANG F, et al. An experimental and numerical analysis for stiffened composite panel subjected to shear loading in hydrothermal environment[J]. Composite Structures, 2016, 138: 107-115. [19] TSAI S W. Composite design[M]. 4th ed. Dayton: Think Composites, 1988. [20] FENG Y, HE Y T, TAN X F, et al. Investigation on impact damage evolution under fatigue load and shear-after-impact-fatigue (SAIF) behaviors of stiffened composite panels[J]. International Journal of Fatigue, 2017, 100(1): 308-321. [21] ROZYLO P, DEBSKI H, KUBIAK T. A model of low-velocity impact damage of composite plates subjected to compression-after-impact (CAI) testing[J]. Composite Structures, 2017, 181: 158-170. [22] ABAR M R, TAY T E, RIDHA M, et al. On the relationship between failure mechanism and compression after impact (CAI) strength in composites[J]. Composite Structures, 2017, 182: 242-250. [23] LIU H B, BRIAN G F, TAN W. Predicting the compression-after-impact (CAI) strength of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates[J]. Composites Part A, 2018, 105: 189-202. [24] TAN W, FALZON B G, CHIU L N S, et al. Predicting low velocity impact damage and compression-after-impact (CAI) behaviour of composite laminates[J]. Composites Part A, 2015, 71: 212-226. [25] 李念. 复合材料加筋板边缘冲击损伤及冲击后压缩失效机理分析[D]. 南京: 南京航空航天大学, 2016. [26] TSAI S W. Strength characteristics of composite materials[R]. Tech Rep NASA CR-224. USA: National Aeronautics and Space Administration, 1965. [27] TSAI S W, WU E M. General theory of strength for anisotropic materials[J]. Journal of Composite Materials, 1971, 5(1): 58-80. [28] HOFFMAN O. The brittle strength of orthotropic materials[J]. Journal of Composite Materials, 1967, 1(2): 200-206. [29] CHAMIS C C. Failure criteria for filamentary composites. Composites materials: Testing and design: ASTM STP 460[S]. Philadelphia: 1969: 336-351. [30] VINGORADOV Y I, DUMANSKII A M, STREKALOV V B. Estimating the fatigue strength characteristics of multilaminated composite materials[J]. Mechanics of Composite Materials, 1993, 29(3): 247-251. [31] JIANG Z, TENNYSON R C. Closure of the cubic tensor polynomial failure surface[J]. Journal of Composite Materials, 1989, 23: 208-231. [32] ENGELSTAD S P, EDDY J N, NIGHT N F. Postbuckling response and failure prediction of graphite-epoxy plates loaded in compression[J]. AIAA Journal, 1992, 30(8): 2106-2113. [33] REDDY Y S N, MOORTHY C M D, REDDY J N. Non-linear progressive failure analysis of laminated composite plates[J]. International Journal of Non-Linear Mechanics, 1995, 30(5): 629-649. [34] SINGH S B, KUMAN A. Postbuckling response and strength of laminates under combined in-plane loads[J]. Composites Science and Technology, 1999, 59(5): 727-736. [35] HUYBRECHTS S, MAJI A, LAO J, et al. Validation of the quadratic composite failure criteria with out-of-plane shear terms[J]. Journal of Composite Materials, 2002, 36: 1879-1888. [36] HASHIN Z, ROTEM A. A fatigue failure criterion for fiber rein-forced materials[J]. Journal of Composite Materials, 1973, 7: 448-464. [37] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334. [38] LI J, LI Y, ZHANG K, et al. Interface damage behaviour during interference-fit bolt installation process for CFRP/Ti alloy joining structure[J]. Fatigue & Fracture of Engineering Materials & Structures, 2015, 38: 1359-1371. [39] ZOU P, LI Y, ZHANG K, et al. Influence of interference-fit percentage on stress and damage mechanism in hi-lock pin installation process of CFRP[J]. Journal of Composite Materials, 2017, 51(25): 3525-3538. [40] ZOU P, ZHANG K, LI Y, et al. Bearing strength and failure analysis on the interference-fit double shear-lap pin-loaded composite[J]. International Journal of Damage Mechanics, 2018, 27(2): 179-200. [41] CHANG F K, CHANG K Y. A progressive damage model for lami-nated composites containing stress concentrations[J]. Journal of Composite Materials, 1987, 21: 834-855. [42] CHANG K Y, LIU S, CHANG F K. Damage tolerance of laminated composites containing an open hole and subjected to tensile loadings[J]. Journal of Composite Materials, 1991, 25: 274-301. [43] CHRISTERSE R M. Stress based yield/failure criteria for fiber composites[J]. International Journal of Solids and Structures, 1997, 34(5): 529-543. [44] PUCK A, SCHURMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology, 1998, 58(7): 1045-1067. [45] PUCK A, MANNIGEL M. Physically based nonlinear stress-strain relations for the inter-fibre fracture analysis of FRP laminates[J]. Composites Science and Technology, 2007, 62(12-13): 1633-1662. [46] DAVILA C G, CAMANHO P P. Failure criteria for FRP laminates in plane stress[R]. Tech Rep NASA/TM-2003-212663. USA: National Aeronautics and Space Administration, 2003. [47] PINHO S T, DAVILA C G, CAMANHO P P, et al. Failure models and criteria for FRP under in-plane or three-dimensional stress states including shear non-linearity[R]. Tech Rep NASA/TM-2005-213530. USA: National Aeronautics and Space Administration, 2003. [48] 周银华. 非线性本构在复合材料多钉螺栓连接结构中的应用[D]. 西安: 西北工业大学, 2015. [49] 李彪. 基于失效机理的复合材料层合板强度分析方法[D]. 西安: 西北工业大学, 2015. [50] OLEMDO A, SANTIUSTE C. On the prediction of bolted single-lap composite joints[J]. Composite Structures, 2012, 94: 2110-7. [51] DANO M L, KAMAL E, GENDRON G. Analysis of bolted joints in composite laminates: Strains and bearing stiffness predictions[J]. Composite Structures, 2007, 79(4): 562-70. [52] LI H, LU Z, ZHANG Y. Probabilistic strength analysis of bolted joint in laminated composites using point estimate method[J]. Composite Structures, 2009, 88(2): 202-211. [53] TAN S C. A progressive failure model for composite laminates containing openings[J]. Journal of Composite Materials, 1991, 25: 556-77. [54] PAPANIKOS P, TSERPES K I, PANTELAKIS S. Modelling of fatigue damage progression and life of CFRP laminates[J]. Fatigue & Fracture of Engineering Materials & Structures, 2003, 26: 37-47. [55] SLEIGHT D W. Progressive failure analysis methodology for lami-nated composite structures[R]. Tech Rep NASA/TM-1999-209107. USA: National Aeronautics and Space Administration, 1999. [56] WANG L J, ZHANG L B, LIU X Y, et al. Mechanical model for predicting thrust and torque in vibration drilling fibre-reinforced composite materials[J]. International Journal of Machine & Manufacture, 2001, 41: 641-657. [57] LINDE P, PLEITNER J, BOER H D, et al. Modelling and simula-tion of fibre metal laminates[Z]. ABAQUS Users′ Conference, 2004. [58] WANG Y Q, TONG M B, ZHU S H. Three dimensional continuum damage mechanics model of progressive failure analysis in fibre-re-inforced composite laminates[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Palm Spring, California: 2009. [59] LEE J W, DANIEL I M. Progressive transverse cracking of crossply composite laminates[J]. Journal of Composite Materials, 1990, 24: 1225-1243. [60] KIN Y W, HONG C S. Progressive failure model for the analysis of laminated composites based on finite element approach[J]. Journal of Reinforced Plastics and Composites, 1992, 11(10): 1078-1092. [61] ROTEM A. Prediction of laminate failure with the ROTEM failure criterion[J]. Composites Science and Technology, 1998, 58(7): 1083-1094. [62] SUN C T, TAO J. Prediction of failure envelopes and stress/strain behaviour of composite laminates[J]. Composites Science and Technology, 1998, 58(7): 1125-1136. [63] HWANG T, HONG C, KIM C. Probabilistic deformation and strength prediction for a filament wound pressure vessel[J]. Composites Part B, 2003, 34(5): 481-497. [64] JOO S, HONG C, KIM C. Free edge effect on the post failure behavior of composite laminates under tensile loading[J]. Journal of Reinforced Plastics and Composites, 2001, 20(3): 191-221. [65] LINDE P, PLEITNER J U R, DE BOER H, et al. Modelling and simulation of fibre metal laminates[M]. Boston Massachusetts: ABAQUS Inc, 2004. [66] MATZEMILLER A, LUBLINER J, TAYLOR R L. A constitutive model for anisotropic damage in fiber composite[J]. Mechanics of Materials, 1995, 20(2): 125-152. [67] KIM E H, RIM M S, LEE I, et al. Composite damage model based on continuum damage mechanics and low velocity impact analysis of composite plates[J]. Composite Structures, 2013, 95: 123-134. [68] 吴义韬, 姚卫星, 吴富强. 基于应变能耗散的复合材料层合板面内缺口强度分析CDM模型[J]. 复合材料学报, 2013, 31(4): 1013-1021. [69] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100-104. [70] EGAN B, MCCARTHY C T, MCCARTHY M A, et al. Stress anal-ysis of single-bolt, single-lap, countersunk composite joints with variable bolt-hole clearance[J]. Composite Structures, 2012, 94(3): 1038-1051. [71] ZOU P, LI Y, ZHANG K, et al. Mode Ⅰ delamination mechanism analysis on CFRP interference-fit during the installation process[J]. Materials & Design, 2017, 116: 268-77. |
[1] | 张茜, 张一帆, 邹齐, 张鹏, 焦亚男, 安柳絮, 刘燕峰, 张代军, 郝俊杰, 陈利. 三维机织复合材料的连接性能与失效机制[J]. 复合材料科学与工程, 2024, 0(9): 5-11. |
[2] | 燕吉强, 谢宗佑, 李军, 邹齐, 雷帅, 曹铁男, 张代军. 铺层角度对聚酰亚胺纤维增强复合材料抗高速冲击性能影响[J]. 复合材料科学与工程, 2024, 0(9): 12-18. |
[3] | 吕续津, 霍红宇, 彭公秋, 张宝艳, 叶金秋, 刘勇. 静电纺丝PPESK纤维毡层间增韧碳纤维/环氧树脂复合材料[J]. 复合材料科学与工程, 2024, 0(9): 19-27. |
[4] | 郭妙才. 导电颗粒改性高韧性复合材料的层间结构和雷击损伤特性[J]. 复合材料科学与工程, 2024, 0(9): 28-36. |
[5] | 李沫莹, 郑林峰, 刘刚, 李梦娇, 姚佳楠. 碳纤维/聚芳醚酮热塑性复合材料与环氧涂层的附着力研究[J]. 复合材料科学与工程, 2024, 0(9): 37-42. |
[6] | 谢文博. 耐高温阻燃环氧树脂碳纤维复合材料性能研究[J]. 复合材料科学与工程, 2024, 0(9): 43-47. |
[7] | 黄大明, 唐立鑫, 孙军涛, 王炜. 残留单体丙烯腈对PAN基碳纤维制备的影响研究[J]. 复合材料科学与工程, 2024, 0(9): 48-51. |
[8] | 冯振辉, 王哲, 曾捷, 陈斌斌, 冯春乐, 周帆. 复合材料层板光纤冲击判位与载荷历程重构方法[J]. 复合材料科学与工程, 2024, 0(9): 52-56. |
[9] | 张德伟, 卫炜, 张聘, 王琦, 赵聪, 安鲁陵. 基于实测数据的飞机复合材料构件外形调控[J]. 复合材料科学与工程, 2024, 0(9): 57-66. |
[10] | 闫超, 戎笑远, 赵月青, 钱忠健. 复合材料共胶接帽形长桁加筋壁板的固化变形研究[J]. 复合材料科学与工程, 2024, 0(9): 67-72. |
[11] | 闫磊, 赵飞, 还大军, 张盛源, 王斌, 肖军. T700/PPS热塑缠绕复合材料NOL环拉-拉疲劳行为研究及寿命预测初探[J]. 复合材料科学与工程, 2024, 0(9): 73-81. |
[12] | 成李冰, 徐伟伟, 李博, 文诗琦. 复合材料肋零件微波固化成型工艺研究[J]. 复合材料科学与工程, 2024, 0(9): 82-86. |
[13] | 武海生, 罗锦涛, 顾轶卓, 孙天峰, 刘佳, 姚旗, 黎昱. 高模量碳纤维复合材料管件高低温交变环境结构稳定性研究[J]. 复合材料科学与工程, 2024, 0(9): 87-91. |
[14] | 付成建, 林松, 郭淑芬. 基于渐进损伤的Ⅳ型复合材料气瓶的爆破压强预测分析[J]. 复合材料科学与工程, 2024, 0(9): 92-97. |
[15] | 徐林, 刘传军, 赵崇书. 复合材料在民用飞机应用与发展趋势[J]. 复合材料科学与工程, 2024, 0(9): 98-104. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 154
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 128
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||