COMPOSITES SCIENCE AND ENGINEERING ›› 2025, Vol. 0 ›› Issue (9): 135-146.DOI: 10.19936/j.cnki.2096-8000.20250928.017
• REVIEW • Previous Articles Next Articles
WU Di1,2, LIU Zhu1, BI Tuanli3, CHENG Luchao2*, LIU Zhenyu2, ZHANG Jifeng1*
Received:2025-04-16
Published:2025-10-23
CLC Number:
WU Di, LIU Zhu, BI Tuanli, CHENG Luchao, LIU Zhenyu, ZHANG Jifeng. Progress in the preparation and application of carbon fiber reinforced polymer mirrors[J]. COMPOSITES SCIENCE AND ENGINEERING, 2025, 0(9): 135-146.
Add to citation manager EndNote|Ris|BibTeX
URL: http://frp.cn/EN/10.19936/j.cnki.2096-8000.20250928.017
| [1] GHOTEKAR Y, VARTAK D, PARMAR J, et al. Development and qualification of CNT-CFRP composite components for space applications[J]. Composites: Mechanics, Computations, Applications, 2024, 15(3): 69-85. [2] WEI L, ZHANG L, GONG X. Design and optimization of the CFRP mirror components[J]. Photonic Sensors, 2017, 7(3): 270-277. [3] CASTILLO S, HAMILTON G, SOTO N, et al. Mitigating print-through effects through an optimized method for CFRP mirror production in chile[C]//Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation Ⅳ. SPIE, 2020, 11451: 114512J. [4] 夏瑜, 曾春梅, 郭培基. 主动成形准各向同性CFRP复合材料反射镜的铺层设计[J]. 红外与激光工程, 2012, 41(7): 1885-1892. [5] 许亮, 解永杰, 丁蛟腾, 等. 基于热稳定及等弯曲刚度的碳纤维层合板铺层设计与优化[J]. 玻璃钢/复合材料, 2016(2): 57-61. [6] ZENG C, YU X, GUO P. Active deformation and engineering analysis of CFRP mirror of various lay-up sequences within quasi-isotropic laminates[C]//7th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies. Harbin: SPIE, 2014, 9281: 92810O. [7] ZENG C, RUI C, MA S, et al. Influence of ply misalignment on form error in the manufacturing of CFRP mirrors with different layup sequences[C]//9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Large Mirrors and Telescopes. Chengdu: SPIE, 2019, 10837: 108370F. [8] CHENG L C, GONG P, WANG Q L, et al. Effects of ply thickness deviation and ply angle misalignment on the surface accuracy of CFRP laminates[J]. Composite Structures, 2021, 270: 114073. [9] 宫鹏, 程路超, 董健, 等. 铺层角度误差对CFRP平面反射镜面形影响研究[J]. 红外与激光工程, 2019, 48(8): 185-191. [10] LIU Q, CAI Y, LIU X, et al. Influence of the ply angle deviation on the out-of-plane deformation of the composite space mirror[J]. Applied Composite Materials, 2019, 26(3): 897-911. [11] YIN K C, SUN Q C, FAN Z H, et al. A novel layup process for reducing surface thermal distortion of CFRP laminate reflector[J]. Composite Structures, 2025, 351: 118517. [12] YANG Z, ZHANG J, XIE Y, et al. Influence of layup and curing on the surface accuracy in the manufacturing of carbon fiber reinforced polymer (CFRP) composite space mirrors[J]. Applied Composite Materials, 2017, 24(6): 1447-1458. [13] MASSARELLO J J, HOCHHALTER J D, FUIERER P A, et al. Composite mirror replication: curing, coating and polishing[C]//Optical Materials and Structures Technologies Ⅱ. San Diego, California, United States: SPIE, 2005, 5868: 58680O. [14] SOTO N, LOBOS C, MARDONES P, et al. Quality control of the CFRP mirror manufacturing process at NPF[C]//Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation Ⅳ. SPEI, 2020, 11451: 14512I. [15] KOYANAGI J, ARAO Y, UTSUNOMIYA S, et al. High accurate space telescope mirror made by light and thermally stable CFRP[J]. Journal of Solid Mechanics and Materials Engineering, 2010, 4(11): 1540-1549. [16] WANG Y J, YAO Y S, XU L, et al. Alleviation of honeycomb print-through of NiP/Cu coated carbon fiber composite mirror via robot-arm wheel polishing[J]. Materials Chemistry and Physics, 2022, 283: 126028. [17] KUMAR M, SIDPARA A. Precision finishing of nickel-phosphorus plated carbon fibre reinforced polymer[J]. Surface Engineering, 2024, 40(3): 310-319. [18] DING J T, FAN X W, XU L, et al. High-precision resin layer polishing of carbon fiber mirror based on optimized ion beam figuring process[J]. Optik, 2020, 206: 163575. [19] THOMPSON S J, ATAD-ETTEDGUI E, LEMKE D, et al. Toward a large lightweight mirror for AO: development of a 1m Ni coated CFRP mirror[C]//Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation. Marseille, France: SPIE, 2008, 7018: 701839. [20] TSUCHIYA K, HOSOBATA T, TAKEDA M, et al. Study on ultra-precision machining of CFRP-NiP lightweight mirror for space X-ray telescope[C]//Proceedings of JSPE Semestrial Meeting, 2022S. Tokyo, Japan: JSPE, 2022: 465-466. [21] UTSUNOMIYA S, KAMIYA T, SHIMIZU R. Development of CFRP mirrors for space telescopes[C]//Material Technologies and Applications to Optics, Structures, Components, and Sub-Systems. San Diego, California, United States: SPIE, 2013, 8837: 88370P. [22] IGAWA T, NAGASAWA A, TAKINO H, et al. Removal rate of abrasive polishing of epoxy resin optical surface[J]. Transactions of the JSME (in Japanese), 2020, 86(892): 20-00208. [23] KOYANAGI J, ARAO Y, UTSUNOMIYA S, et al. Time and temperature dependence of surface accuracy of high-precision CFRP mirrors[C]//18th International Conference on Composites Materials. Busan, Korea: ICCM, 2011: 41-46. [24] HONDA S, KOGO Y, ISHIKAWA M, et al. Moisture deformation behavior of plastic foam core CFRP mirror[C]//The Proceedings of Mechanical Engineering Congress. Kanazawa, Japan: JSME, 2012:J043035. [25] NISHIBORI T, KAMIYA T, ISHIDA R, et al. Long-term space environmental testing of lightweight and high-precision CFRP mirrors(CAGOME)using ExHAM[J]. Aeronautical Space Sciences Japan, 2019, 67(4): 133-139. [26] KOYANAGI J, ARAO Y, TAKEDA S I, et al. Time and temperature dependence of surface accuracy on CFRP sandwich mirror[J]. Materials System, 2012, 30: 41-46. [27] UTSUNOMIYA S, KAMIYA T, SHIMIZU R. Development of CFRP mirrors for low-temperature application of satellite telescopes[C]//Modern Technologies in Space- and Ground-based Telescopes and Instrumentation Ⅱ. Amsterdam, Netherlands: SPIE, 2012, 8450:84502R. [28] DE ZANET G, VIQUERAT A, AGLIETTI G. Dynamic interferometric measurements of thermally-induced deformations on telescope based on high-strain composite tape-springs[J]. Thin-Walled Structures, 2022, 179: 109657. [29] QIU Z H, WU D R, ZHANG Y, et al. On the mechanical behavior of carbon fiber/epoxy laminates exposed in thermal cycling environments[J]. Thin-Walled Structures, 2024, 196: 111481. [30] JONES M L, WALKER D, NAYLOR D A, et al. CFRP mirror technology for cryogenic space interferometry: review and progress to date[C]//Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave. Edinburgh, United Kingdom: SPIE, 2016, 9904: 99046F. [31] WANG Y J, XU L, DING J T, et al. Analysis and test study of thermal deformation on a grid reinforced CFRP mirror[C]//The 21st International Congress on Composite Materials. Xi’an: ICCM, 2017, 30626: 1-7. [32] ARAO Y, KOYANAGI J, UTSUNOMIYA S, et al. Analysis of time-dependent deformation of a CFRP mirror under hot and humid conditions[J]. Mechanics of Time-Dependent Materials, 2009, 13(2): 183-197. [33] ARAO Y, KOYANAGI J, UTSUNOMIYA S, et al. Analysis of thermal deformation on a honeycomb sandwich CFRP mirror[J]. Mechanics of Advanced Materials Structures, 2010, 17: 328-334. [34] ARAO Y, KOYANAGI J, UTSUNOMIYA S, et al. Time-dependent deformation of surface geometry on light weight and thermally stable CFRP mirror in humid environment[C]//Modern Technologies in Space- and Ground-based Telescopes and Instrumentation. San Diego, California, United States: SPEI, 2010, 7739: 77392N. [35] WANG Y, XU L, DING J T, et al. Mirrors fabricated by all CFRP composites and their dimensional stability in air[C]//The 21st International Conference on Composite Materials. Xi’an: ICCM, 2017, 3939: 1-7. [36] AWAKI H, YOSHIDA T, OUE C, et al. Effect of barrier layer on moisture absorption of thin carbon-fiber-reinforced plastic mirror substrates[J]. Journal of Astronomical Telescopes, Instruments, Systems, 2019, 5(4): 1-6. [37] 王永杰, 解永杰, 马臻, 等. 空间反射镜新材料研究进展[J]. 材料导报, 2016, 30(7): 143-147, 153. [38] AWAKI H, OUE C, IWAKIRI H, et al. Development of a lightweight X-ray mirror using thin carbon-fiber-reinforced plastic (CFRP)[C]//Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray. Austin, Tesas, United States: SPIE: 2018, 10699: 106993R. [39] AWAKI H, MATSUMOTO H J S-S R R. Development of lightweight high resolution X-ray mirror with CFRP[J]. Spring-8/SACLA Research Report (Web), 2022, 10(3): 275-285. [40] RESTAINO S R, MARTINEZ T, ANDREWS J R, et al. Meter class carbon fiber reinforced polymer (CFRP) telescope program at the naval research laboratory[C]//Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation. Marseille, France: SPIE, 2008, 7018: 70183C. [41] ROMEO R C, MARTIN R N. Progress in 1m-class lightweight CFRP composite mirrors for the ULTRA telescope[C]//Optomechanical Technologies for Astronomy. Orlando, Florida, United States: 2006, 6273: 62730S. [42] ROMEO R C, MARTIN R N. CFRP mirror technology for submillimeter and shorter wavelengths[C]//17th International Symposium on Space Terahettz Technology. Oxford, United Kingdom: Department of Physics, University of Oxford, 2006: 271. [43] RAMPINI F, MARCHIORI G. CFRP solutions for the innovative telescopes design[C]//2nd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Large Mirrors and Telescopes. Xi’an: SPIE, 2006, 6148: 61480B. [44] JESSEN N C, NØRGAARD-NIELSEN H U, SCHROLL J. CFRP lightweight structures for extremely large telescopes[J]. Composite Structures, 2008, 82(2): 310-316. [45] DING J, XU L, MA Z, et al. The lightweight structure design of a CFRP mirror[C]//8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies. Suzhou: SPIE, 2016, 9683: 96831X. [46] 赵惠, 樊学武, 马臻, 等. 用于无运动部件变焦的球面变曲率镜设计及试验[J]. 航天返回与遥感, 2014, 35(3): 50-59. [47] ROMEO R C, MARTIN R N. Unique space telescope concepts using CFRP composite thin-shelled mirrors and structures[C]//UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts Ⅲ. San Diego, California, United States: SPIE, 2007, 6687: 66870U. [48] JUNGWIRTH M E L, WILCOX C C, WICK D V, et al. Large-aperture active optical carbon fiber reinforced polymer mirror[C]//Micro- and Nanotechnology Sensors, Systems, and Applications Ⅴ. Baltimore, Maryland, United States: SPIE, 2013, 8725: 87250W. [49] ZHAO H, FAN X, PANG Z, et al. CFRP variable curvature mirror being capable of generating a large variation of saggitus: prototype design and experimental demonstration[C]//Optical Design and Testing Ⅵ. Beijing: SPIE, 2014, 9272: 92720S. [50] BAGHSIAHI H, JONES M, BROOKS D, et al. Design, simulation and manufacturing a CFRP prototype mirror for active/adaptive optics[C]//Optifab. Rochester, New York, United States: SPIE, 2019, 11175: 111750W. [51] XU L, WANG Y J, WU X G, et al. Development of an ultra-thin active mirror based on carbon fiber composite[J]. Optik, 2020, 207: 164463. |
| [1] | GUAN Tianyu, JIANG Lan, DUAN Guoyong, TANG Bo. Effectiveness analysis of carbon fiber reinforced transmission tower angle steel [J]. COMPOSITES SCIENCE AND ENGINEERING, 2024, 0(6): 48-59. |
| [2] |
YANG Qing, CHENG Chao, DIAO Chunxia, LÜ Yueen, ZHOU Fei, DING Xiaoma, CHEN Zhengguo.
Preparation and characterization of epoxy resin-modified polydicyclopentadiene and its carbon fiber composites [J]. COMPOSITES SCIENCE AND ENGINEERING, 2023, 0(5): 32-36. |
| [3] | HU Yefa, MENG You, ZHANG Jinguang, DENG Wei, XU Shengfeng. Nondestructive testing and evaluation of carbon fiber reinforced polymer laminates with inclusions [J]. COMPOSITES SCIENCE AND ENGINEERING, 2023, 0(2): 94-100. |
| [4] | MEN Shu-lin, ZHANG Jian-min, GAO Zhi-hao, WEN Rong-yan, LUO Lin, CUI Xiao-chen. Study on the preparation and properties of synergistic reinforcement system of carbon fiber and polyamide self-reinforced composite [J]. COMPOSITES SCIENCE AND ENGINEERING, 2022, 0(6): 41-46. |
| [5] | YANG Sa, ZHOU Wei, JI Xiao-long, LIU Jia, MA Lian-hua. Effects of cellulose nanofibers on CFRP interface and damage evolution behavior [J]. COMPOSITES SCIENCE AND ENGINEERING, 2022, 0(5): 71-77. |
| [6] | MA Sheng-qiang, SUN Jian-feng. EXPERIMENTAL STUDY ON TORSIONAL BEHAVIOR OF RC BOX BEAM STRENGTHENED BY CFRP UNDER DIFFERENT TORQUE-TO-SHEAR RATIOS [J]. Composites Science and Engineering, 2020, 0(9): 29-36. |
| [7] | DENG Lang-ni, YE Xuan, LU Yun-peng, MA Jin-chao. EXPERIMENTAL STUDY ON THE REINFORCEMENT OF THE SIDE AND BOTTOM OF CFRP PLATE [J]. Fiber Reinforced Plastics/Composites, 2019, 0(6): 12-16. |
| [8] | ZHU Yuan-lin, LIU Li-hua, ZHOU Jia-qi, HUANG Sheng-bin. RESEARCH ON CARBON FIBER REINFORCED POLYMER STAY-CABLE AND ITS MECHANICAL PROPERTY [J]. Fiber Reinforced Plastics/Composites, 2019, 0(6): 80-84. |
| [9] | ZHANG Ran-ran, CHEN Yi-ning, XIONG Jian-min, SU Yi-chang. STUDY ON SHEAR PROPERTIES OF "CARBON FIBER REINFORCED POLYMERS/DC04" STEEL [J]. Fiber Reinforced Plastics/Composites, 2019, 0(5): 89-93. |
| [10] | ZHU Yuan-lin, LIU Li-hua, ZHOU Jia-qi, HUANG Sheng-bin. EXPERIMENTAL RESEARCH ON FATIGUE CHARACTERISTICS AND STRESS RELAXATION OF ADHESIVE ANCHORAGE SYSTEM FOR CFRP TENDON [J]. Fiber Reinforced Plastics/Composites, 2019, 0(3): 11-15. |
| [11] | XIA Ping, YANG Hai-ru, TAN Yue-gang. STUDY ON VIBRATION PROPERTIES OF CFRP AT HIGH TEMPERATURES BASED ON FBG [J]. Fiber Reinforced Plastics/Composites, 2019, 0(12): 24-28. |
| [12] | LIU Li-hua, ZHU Yuan-lin, ZHANG Ji-wen, ZHOU Zhu-bing. PROGRESS IN THE STUDY ON MECHANICAL PROPERTIES OF ANCHORAGE SYSTEM FOR CFRP CABLES [J]. COMPOSITES SCIENCE AND ENGINEERING, 2015, 0(2): 81-86. |
| [13] | HAO Xin-kai, HUANG Sheng-de, ZHANG Hong-wei, XIAN Gui-jun. EFFECTS OF WATER IMMERSION ON THE WATER UPTAKE AND SHEAR STRENGTH OF PULTRUDED CARBON FIBER REINFORCED EPOXY RODS [J]. COMPOSITES SCIENCE AND ENGINEERING, 2014, 0(12): 68-73. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||