[1] GUO C, ZHANG H, WANG Y, et al. Parametric modeling of 2.5D woven composites based on computer vision feature extraction[J]. Composite Structures, 2023, 321: 117234. [2] GUO J, WEN W, ZHANG H, et al. Representative cell modeling strategy of 2.5D woven composites considering the randomness of weft cross-section for mechanical properties prediction[J]. Engineering Fracture Mechanics, 2020, 237: 107255. [3] LIANG H, WANG Y, TONG M, et al. Multi-scale strength analysis of bolted connections used in integral thermal protection system[J]. Chinese Journal Aeronaut, 2018, 31: 1728-1740. [4] XU J, LOMOV S, VERPOEST I, et al. A progressive damage model of textile composites on meso-scale using finite element method: fatigue damage analysis[J]. Composite Structures, 2015, 152: 96-112. [5] 崔海涛, 郭俊华, 张宏建, 等. 2.5维机织复合材料细观几何模型及刚度预测方法研究进展[J]. 推进技术, 2022, 43(8): 6-25. [6] GEREKE T, CHERIF C. A review of numerical models for 3D woven composite reinforcements[J]. Composite Structures, 2019, 209: 60-66. [7] GUO J, ZHANG X, WEN H, et al. Multiaxial failure mechanism of 3D triple-twill warp-lining woven composites[J]. Materials Letters, 2024, 357: 135648. [8] LI Z, LI D, ZHU H, et al. Mechanical properties prediction of 3D angle-interlock woven composites by finite element modeling method[J]. Materials Today Communications, 2020, 22: 100769. [9] ZHANG J, QIAN K, ZHANG D. Reverse reconstruction of geometry modeling and numerical verification of 2.5D woven composites based on deep learning[J]. Composite Structures, 2024, 329: 117801. [10] 王雅娜, 曾安民, 陈新文, 等. 2.5D机织石英纤维增强树脂复合材料不同方向力学性能测试与模量预测[J]. 复合材料学报, 2019, 36(6): 1364-1373. [11] LEE C S, CHUNG S W, SHIN H, et al. Virtual material characterization of 3D orthogonal woven composite materials by large-scale computing[J]. Journal of Composite Materials, 2005, 39(10): 851-863. [12] 李存静, 陶洋, 逄增媛, 等. 2.5D机织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料高温力学行为及损伤机制[J]. 复合材料学报, 2024, 41(1): 144-154. [13] HUANG H, SHAN Z, LIU J, et al. A unified trans-scale mechanical properties prediction method of 3D composites with void defects[J]. Composite Structures, 2023, 306: 116574. [14] SONG J, WEN W, CUI H. Experimental and numerical investigation of mechanical behaviors of 2.5D woven composites at ambient and un-ambient temperatures[J]. Composite Structures, 2018, 201: 699-720. [15] SUQUET P. Elements of homogenization for inelastic solid mechanics[M]//SANCHEZ-PALENCIA E, ZAOUI A. Homogenization techniques for composite media. Berlin: Springer-Verlag, 1987: 193-279. [16] XIA Z H, ZHANG Y F, ELLYIN F. A unified periodical boundary conditions for representative volume elements of composites and applications[J]. International Journal of Solids and Structures, 2003, 40(8): 1907-1921. [17] XIA Z H, ZHOU C W, YONG Q L, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites[J]. International Journal of Solids and Structures, 2006, 43(2): 266-278. [18] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47: 329-334. [19] CAMANHO P P, MATTHEWS F L. A progressive damage model for mechanically fastened joints in composite laminates[J]. Journal of Composite Materials, 199, 33(24): 2248-2280. [20] FANG G, LIANG J, LU Q, et al. Investigation on the compressive properties of the three dimensional four-directional braided composites[J]. Composite Structures, 2011, 93(2): 392-405. |