[1] FAN S, ZHANG J, WANG B, et al. A deep learning method for fast predicting curing process-induced deformation of aeronautical composite structures[J]. Composites Science and Technology, 2023, 232: 109844. [2] YUAN Z, WANG Y, YANG G, et al. Evolution of curing residual stresses in composite using multi-scale method[J]. Composites Part B: Engineering, 2018, 155: 49-61. [3] CHEN J, WANG J, LI X, et al. Monitoring of temperature and cure-induced strain gradient in laminated composite plate with FBG sensors[J]. Composite Structures, 2020, 242: 112168. [4] HANNA E G, YOUNES K, AMINE S, et al. Exploring gel-point identification in epoxy resin using rheology and unsupervised learning[J]. Gels, 2023, 9(10): 828. [5] 李树健, 湛利华, 白海明, 等. 基于树脂流动的变截面复合材料结构固化过程热-流-固多场强耦合数值仿真[J]. 复合材料学报, 2018, 35(8): 2095-2102. [6] SREEKANTAMURTHY T, HUDSON T B, HOU T-H, et al. Composite cure process modeling and simulations using COMPRO (registered trademark) and validation of residual strains using fiber optics sensors[C]//Technical Conference of the American Society for Composites. Williamsburg, VA: American Society for Composites, 2016. [7] ZHANG G, LUO L, LIN T, et al. Multi-objective optimisation of curing cycle of thick aramid fibre/epoxy composite laminates[J]. Polymers, 2021, 13(23): 4070. [8] GONCALVES P T, ARTEIRO A, ROCHA N. Micro-mechanical analysis of the effect of ply thickness on curing micro-residual stresses in a carbon/epoxy composite laminate[J]. Composite Structures, 2023, 319: 117158. [9] ESPOSITO L, SORRENTINO L, PENTA F, et al. Effect of curing overheating on interlaminar shear strength and its modelling in thick FRP laminates[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87: 2213-2220. [10] ZHANG W, XU Y, HUI X, et al. A multi-dwell temperature profile design for the cure of thick CFRP composite laminates[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117: 1133-1146. [11] GAO Y, LIN Z, ZHOU Y, et al. Size effect in curing optimization for thick composite laminates[J]. Materials Today Communications, 2023, 34: 105276. [12] 乔巍, 姚卫星, 黄杰. 基于RBF神经网络的复合材料固化均匀性优化[J]. 机械设计与制造工程, 2020, 49(12): 91-95. [13] 唐良军, 朱永国, 龚晓, 等. 基于温度曲线优化的复合材料固化温度和固化度协同控制[J]. 工业技术创新, 2022, 9(3): 23-31. [14] YANG W, LIU W, JIA Y, et al. Coupled filling-curing simulation and optimized design of cure cycle in liquid composite molding[J]. The International Journal of Advanced Manufacturing Technology, 2024, 132(5): 2489-2501. [15] GAO Y, YE J, YUAN Z, et al. Optimization strategy for curing ultra-thick composite laminates based on multi-objective genetic algorithm[J]. Composites Communications, 2022, 31: 101115. [16] YUAN Z, KONG L, GAO D, et al. Multi-objective approach to optimize cure process for thick composite based on multi-field coupled model with RBF surrogate model[J]. Composites Communications, 2021, 24: 100671. [17] TIFKITSIS K, MESOGITIS T, STRUZZIERO G, et al. Stochastic multi-objective optimisation of the cure process of thick laminates[J]. Composites Part A: Applied Science and Manufacturing, 2018, 112: 383-394. [18] LU B, MOYA C, LIN G. NSGA-PINN: a multi-objective optimization method for physics-informed neural network training[J]. Algorithms, 2023, 16(4): 194. [19] ALEKSENDRIC′ D, BELLINI C, CARLONE P, et al. Neural-fuzzy optimization of thick composites curing process[J]. Materials and Manufacturing Processes, 2019, 34(3): 262-273. [20] XU Y, ZHAO Z, SHRESTHA K, et al. A coupled data-physics computational framework for temperature, residual stress, and distortion modeling in autoclave process of composite materials[J]. Composites Part A: Applied Science and Manufacturing, 2024, 183: 108218. [21] NIAKI S A, HAGHIGHAT E, CAMPBELL T, et al. Physics-informed neural network for modelling the thermochemical curing process of composite-tool systems during manufacture[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 384: 113959. [22] WHITE S R, KIM Y K. Process-induced residual stress analysis of AS4/3501-6 composite material[J]. Mechanics of Composite Materials and Structures an International Journal, 1998, 5(2): 153-186. [23] BEHZAD T, SAIN M. Finite element modeling of polymer curing in natural fiber reinforced composites[J]. Composites Science and Technology, 2007, 67(7-8): 1666-1673. [24] SPRINGER G S, TSAI S W. Thermal conductivities of unidirectional materials[J]. Journal of Composite Materials, 1967, 1(2): 166-173. [25] GUTOWSKI T, DILLON G. The elastic deformation of lubricated carbon fiber bundles: comparison of theory and experiments[J]. Journal of Composite Materials, 1992, 26(16): 2330-2347. [26] DAVÉ R. A unified approach to modeling resin flow during composite processing[J]. Journal of Composite Materials, 1990, 24(1): 22-41. [27] LEE W I, LOOS A C, SPRINGER G S. Heat of reaction, degree of cure, and viscosity of Hercules 3501-6 resin[J]. Journal of Composite Materials, 1982, 16(6): 510-520. [28] SHIN D D, HAHN H T. Compaction of thick composites: simulation and experiment[J]. Polymer Composites, 2004, 25(1): 49-59. [29] YUAN Z, TONG X, YANG G, et al. Curing cycle optimization for thick composite laminates using the multi-physics coupling model[J]. Applied Composite Materials, 2020, 27: 839-860. [30] LU L, HUAN S, LU M, et al. Three-dimensional thermo-chemo-mechanical coupled curing analysis for the filament wound composite shell[J]. Polymers, 2024, 16(12): 1643. [31] BRAUNER C, FRERICH T, HERRMANN A S. Cure-dependent thermomechanical modelling of the stress relaxation behaviour of composite materials during manufacturing[J]. Journal of Composite Materials, 2017, 51(7): 877-898. [32] WANG Q, WANG L, ZHU W, et al. Numerical investigation of the effect of thermal gradients on curing performance of autoclaved laminates[J]. Journal of Composite Materials, 2020, 54(1): 127-138. [33] SHAH P, HALLS V, ZHENG J, et al. Optimal cure cycle parameters for minimizing residual stresses in fiber-reinforced polymer composite laminates[J]. Journal of Composite Materials, 2018, 52(6): 773-792. |