[1] SUN G, CHEN D, ZHU G, et al. Lightweight hybrid materials and structures for energy absorption: a state-of-the-art review and outlook[J]. Thin-Walled Structures, 2022, 172: 108760. [2] YAO R, PANG T, ZHANG B, et al. On the crashworthiness of thin-walled multi-cell structures and materials: state of the art and prospects[J]. Thin-Walled Structures, 2023, 189: 110734. [3] MAGLIARO J, ALTENHOF W, ALPAS A T. A review of advanced materials, structures and deformation modes for adaptive energy dissipation and structural crashworthiness[J]. Thin-Walled Structures, 2022, 180: 109808. [4] KIM J-S, YOON H-J, SHIN K-B. Experimental investigation of composite sandwich square tubes under quasi-static and dynamic axial crushing[J]. Advanced Composite Materials, 2011, 20(4): 385-404. [5] ZUO W, LUO Q, LI Q, et al. Effect of thermal and hydrothermal aging on the crashworthiness of carbon fiber reinforced plastic composite tubes[J]. Composite Structures, 2022, 303: 116136. [6] SEBAEY T A. Crashworthiness of GFRP composite tubes after aggressive environmental aging in seawater and soil[J]. Composite Structures, 2022, 284: 115105. [7] MAMALIS A G, MANOLAKOS D E, IOANNIDIS M B, et al. Crashworthy characteristics of axially statically compressed thin-walled square CFRP composite tubes: experimental[J]. Composite Structures, 2004, 63(3-4): 347-360. [8] MAMALIS A G, MANOLAKOS D E, IOANNIDIS M B, et al. On the response of thin-walled CFRP composite tubular components subjected to static and dynamic axial compressive loading: experimental[J]. Composite Structures, 2005, 69(4): 407-420. [9] MAMALIS A G, MANOLAKOS D E, DEMOSTHENOUS G A, et al. The static and dynamic axial crumbling of thin-walled fibreglass composite square tubes[J]. Composites Part B: Engineering, 1997, 28(4): 439-451. [10] MAMALIS A G, MANOLAKOS D E, DEMOSTHENOUS G A, et al. Analytical modelling of the static and dynamic axial collapse of thin-walled fibreglass composite conical shells[J]. International Journal of Impact Engineering, 1997, 19(5-6): 477-492. [11] ZHU G, SUN G, LI G, et al. Modeling for CFRP structures subjected to quasi-static crushing[J]. Composite Structures, 2018, 184: 41-55. [12] BUSSADORI B P, SCHUFFENHAUER K, SCATTINA A. Modelling of CFRP crushing structures in explicit crash analysis[J]. Composites Part B: Engineering, 2014, 60: 725-735. [13] 王凯, 马其华, 查一斌. 端部诱导孔对Al-CFRP混合薄壁管轴向压缩性能的影响[J]. 复合材料科学与工程, 2021(2): 65-71. [14] SOKOLINSKY V S, INDERMUEHLE K C, HURTADO J A. Numerical simulation of the crushing process of a corrugated composite plate[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(9): 1119-1126. [15] 朱国华. 金属/碳纤维混合材料薄壁结构耐撞性研究[D]. 长沙: 湖南大学, 2019. [16] BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology, 1996, 56(4): 439-449. [17] HUANG Z, ZHANG X, YANG C. Static and dynamic axial crushing of Al/CRFP hybrid tubes with single-cell and multi-cell sections[J]. Composite Structures, 2019, 226: 111023. [18] REUTER C, TRÖSTER T. Crashworthiness and numerical simulation of hybrid aluminium-CFRP tubes under axial impact[J]. Thin-Walled Structures, 2017, 117: 1-9. [19] MCGREGOR C, VAZIRI R, XIAO X. Finite element modelling of the progressive crushing of braided composite tubes under axial impact[J]. International Journal of Impact Engineering, 2010, 37(6): 662-672. [20] 梁泽乾, 魏刚, 李想. 复合材料纵向圆形波纹圆柱壳轴向压缩失效特性研究[J]. 复合材料科学与工程, 2023(5): 45-52. |