[1] 秦浩力. 环氧树脂基复合材料的高速冲击力学性能[D]. 淮南: 安徽理工大学, 2022.
[2] TÜFEKCI M, ÖZKAL B, MAHARAJ C, et al. Strain-rate-dependent mechanics and impact performance of epoxy-based nanocomposites[J]. Composites Science and Technology, 2023, 233: 109870.
[3] LIU L, XU K, XU Y, et al. Experimental study of quasi-static and dynamic tensile behavior of epoxy resin under cyclic hygrothermal aging[J]. Polymer Degradation and Stability, 2022, 200: 109940.
[4] GUO L Y, WANG L Y, SU X. Research progress of new methods for toughening epoxy resin[J].Advanced Materials Research, 2012, 490: 3598-3602.
[5] BELHADJ O, HAMMICHE D, BOUKERROU A, et al. Evaluation and characterization of randomly oriented alfa fibers reinforced epoxy-amine composites[J]. Macromolecular Symposia, 2022, 404(1): 2200057.
[6] LUO G, WU C, XU K, et al. Development of dynamic constitutive model of epoxy resin considering temperature and strain rate effects using experimental methods[J]. Mechanics of Materials, 2021, 159: 103887.
[7] NACHTANE M, TARFAOUI M, SASSI S, et al. An investigation of hygrothermal aging effects on high strain rate behaviour of adhesively bonded composite joints[J]. Composites Part B: Engineering, 2019, 172: 111-120.
[8] KLINGLER A, HE Q, WETZEL B, et al. Low velocity impact resistance of thin and toughened carbon fibre reinforced epoxy[J]. Composites Science and Technology, 2022, 230: 109362.
[9] GU J, BAI Y, ZHAO Z, et al. Temperature and strain rate sensitivity of modulus and yield strength of epoxy resin under compressive loads[J]. Polymer, 2024, 295: 126744.
[10] UCHIDA M, WAKUDA R, KANEKO Y. Evaluation and modeling of mechanical behaviors of thermosetting polymer under monotonic and cyclic tensile tests[J]. Polymer, 2019, 174: 130-142.
[11] BEHZADI S, JONES F R. Yielding behavior of model epoxy matrices for fiber reinforced composites: effect of strain rate and temperature[J]. Journal of Macromolecular Science, Part B: Physics, 2005, 44(6): 993-1005.
[12] 吴春波. 环氧树脂不同温度下动态力学行为及本构模型研究[D]. 南京: 南京航空航天大学, 2020.
[13] FENG J, GUO Z. Effects of temperature and frequency on dynamic mechanical properties of glass/epoxy composites[J]. Journal of Materials Science, 2016, 51: 2747-2758.
[14] 乔井彦, 李金柱, 张羲黄, 等. 环氧树脂玻璃钢的动静态拉伸力学特性[J]. 高压物理学报, 2023, 37(3): 29-38.
[15] 赵昌林, 何永明. 平纹碳纤维复合材料拉伸及环氧树脂压缩力学实验研究[J]. 兵器装备工程学报, 2022, 43(6): 309-316.
[16] ZHAO C F, ZHOU Z T, ZHAO C X, et al. Research on compression properties of unidirectional carbon fiber reinforced epoxy resin composite (UCFREP)[J]. Journal of Composite Materials, 2021, 55(11): 1447-1458.
[17] ZHANG K, LI W, ZHENG Y, et al. Compressive properties and constitutive model of semicrystalline polyethylene[J]. Polymers, 2021, 13(17): 2895.
[18] ZHONG J L, REN R, TANG Z R, et al. Analysis of nonlinear mechanical behavior of resin materials at low and medium strain rates[J]. Polymer Composites, 2022, 43(6): 3699-3707.
[19] ZHANG K, LI W, WANG X, et al. A constitutive model of the compressive mechanical properties of ultra high molecular weight polyethylene (UHMWPE) at different temperatures and different strain rates[J]. Materials Research Express, 2020, 6(12): 125370. |